test_train_inference_python.sh 18.3 KB
Newer Older
M
MissPenguin 已提交
1
#!/bin/bash
L
fix bug  
LDOUBLEV 已提交
2
source test_tipc/common_func.sh
M
MissPenguin 已提交
3 4

FILENAME=$1
L
rename  
LDOUBLEV 已提交
5
# MODE be one of ['lite_train_lite_infer' 'lite_train_whole_infer' 'whole_train_whole_infer', 'whole_infer', 'klquant_whole_infer']
L
LDOUBLEV 已提交
6 7
MODE=$2

L
LDOUBLEV 已提交
8
dataline=$(awk 'NR==1, NR==51{print}'  $FILENAME)
M
MissPenguin 已提交
9 10 11 12 13 14 15 16 17 18 19 20 21 22

# parser params
IFS=$'\n'
lines=(${dataline})

# The training params
model_name=$(func_parser_value "${lines[1]}")
python=$(func_parser_value "${lines[2]}")
gpu_list=$(func_parser_value "${lines[3]}")
train_use_gpu_key=$(func_parser_key "${lines[4]}")
train_use_gpu_value=$(func_parser_value "${lines[4]}")
autocast_list=$(func_parser_value "${lines[5]}")
autocast_key=$(func_parser_key "${lines[5]}")
epoch_key=$(func_parser_key "${lines[6]}")
L
LDOUBLEV 已提交
23
epoch_num=$(func_parser_params "${lines[6]}" "${MODE}")
M
MissPenguin 已提交
24 25
save_model_key=$(func_parser_key "${lines[7]}")
train_batch_key=$(func_parser_key "${lines[8]}")
L
LDOUBLEV 已提交
26
train_batch_value=$(func_parser_params "${lines[8]}" "${MODE}")
M
MissPenguin 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
pretrain_model_key=$(func_parser_key "${lines[9]}")
pretrain_model_value=$(func_parser_value "${lines[9]}")
train_model_name=$(func_parser_value "${lines[10]}")
train_infer_img_dir=$(func_parser_value "${lines[11]}")
train_param_key1=$(func_parser_key "${lines[12]}")
train_param_value1=$(func_parser_value "${lines[12]}")

trainer_list=$(func_parser_value "${lines[14]}")
trainer_norm=$(func_parser_key "${lines[15]}")
norm_trainer=$(func_parser_value "${lines[15]}")
pact_key=$(func_parser_key "${lines[16]}")
pact_trainer=$(func_parser_value "${lines[16]}")
fpgm_key=$(func_parser_key "${lines[17]}")
fpgm_trainer=$(func_parser_value "${lines[17]}")
distill_key=$(func_parser_key "${lines[18]}")
distill_trainer=$(func_parser_value "${lines[18]}")
trainer_key1=$(func_parser_key "${lines[19]}")
trainer_value1=$(func_parser_value "${lines[19]}")
trainer_key2=$(func_parser_key "${lines[20]}")
trainer_value2=$(func_parser_value "${lines[20]}")

eval_py=$(func_parser_value "${lines[23]}")
eval_key1=$(func_parser_key "${lines[24]}")
eval_value1=$(func_parser_value "${lines[24]}")

save_infer_key=$(func_parser_key "${lines[27]}")
export_weight=$(func_parser_key "${lines[28]}")
norm_export=$(func_parser_value "${lines[29]}")
pact_export=$(func_parser_value "${lines[30]}")
fpgm_export=$(func_parser_value "${lines[31]}")
distill_export=$(func_parser_value "${lines[32]}")
export_key1=$(func_parser_key "${lines[33]}")
export_value1=$(func_parser_value "${lines[33]}")
export_key2=$(func_parser_key "${lines[34]}")
export_value2=$(func_parser_value "${lines[34]}")
L
LDOUBLEV 已提交
62
inference_dir=$(func_parser_value "${lines[35]}")
M
MissPenguin 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

# parser inference model 
infer_model_dir_list=$(func_parser_value "${lines[36]}")
infer_export_list=$(func_parser_value "${lines[37]}")
infer_is_quant=$(func_parser_value "${lines[38]}")
# parser inference 
inference_py=$(func_parser_value "${lines[39]}")
use_gpu_key=$(func_parser_key "${lines[40]}")
use_gpu_list=$(func_parser_value "${lines[40]}")
use_mkldnn_key=$(func_parser_key "${lines[41]}")
use_mkldnn_list=$(func_parser_value "${lines[41]}")
cpu_threads_key=$(func_parser_key "${lines[42]}")
cpu_threads_list=$(func_parser_value "${lines[42]}")
batch_size_key=$(func_parser_key "${lines[43]}")
batch_size_list=$(func_parser_value "${lines[43]}")
use_trt_key=$(func_parser_key "${lines[44]}")
use_trt_list=$(func_parser_value "${lines[44]}")
precision_key=$(func_parser_key "${lines[45]}")
precision_list=$(func_parser_value "${lines[45]}")
infer_model_key=$(func_parser_key "${lines[46]}")
image_dir_key=$(func_parser_key "${lines[47]}")
infer_img_dir=$(func_parser_value "${lines[47]}")
save_log_key=$(func_parser_key "${lines[48]}")
benchmark_key=$(func_parser_key "${lines[49]}")
benchmark_value=$(func_parser_value "${lines[49]}")
infer_key1=$(func_parser_key "${lines[50]}")
infer_value1=$(func_parser_value "${lines[50]}")

L
LDOUBLEV 已提交
91
# parser klquant_infer
L
rename  
LDOUBLEV 已提交
92
if [ ${MODE} = "klquant_whole_infer" ]; then
L
LDOUBLEV 已提交
93
    dataline=$(awk 'NR==1, NR==17{print}'  $FILENAME)
L
LDOUBLEV 已提交
94
    lines=(${dataline})
L
LDOUBLEV 已提交
95 96
    model_name=$(func_parser_value "${lines[1]}")
    python=$(func_parser_value "${lines[2]}")
L
LDOUBLEV 已提交
97 98
    export_weight=$(func_parser_key "${lines[3]}")
    save_infer_key=$(func_parser_key "${lines[4]}")
L
LDOUBLEV 已提交
99
    # parser inference model 
L
LDOUBLEV 已提交
100 101 102
    infer_model_dir_list=$(func_parser_value "${lines[5]}")
    infer_export_list=$(func_parser_value "${lines[6]}")
    infer_is_quant=$(func_parser_value "${lines[7]}")
L
LDOUBLEV 已提交
103
    # parser inference 
L
LDOUBLEV 已提交
104 105
    inference_py=$(func_parser_value "${lines[8]}")
    use_gpu_key=$(func_parser_key "${lines[9]}")
L
fix bug  
LDOUBLEV 已提交
106
    use_gpu_list=$(func_parser_value "${lines[9]}")
L
LDOUBLEV 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120
    use_mkldnn_key=$(func_parser_key "${lines[10]}")
    use_mkldnn_list=$(func_parser_value "${lines[10]}")
    cpu_threads_key=$(func_parser_key "${lines[11]}")
    cpu_threads_list=$(func_parser_value "${lines[11]}")
    batch_size_key=$(func_parser_key "${lines[12]}")
    batch_size_list=$(func_parser_value "${lines[12]}")
    use_trt_key=$(func_parser_key "${lines[13]}")
    use_trt_list=$(func_parser_value "${lines[13]}")
    precision_key=$(func_parser_key "${lines[14]}")
    precision_list=$(func_parser_value "${lines[14]}")
    infer_model_key=$(func_parser_key "${lines[15]}")
    image_dir_key=$(func_parser_key "${lines[16]}")
    infer_img_dir=$(func_parser_value "${lines[16]}")
    save_log_key=$(func_parser_key "${lines[17]}")
L
LDOUBLEV 已提交
121
    save_log_value=$(func_parser_value "${lines[17]}")
L
LDOUBLEV 已提交
122 123 124 125
    benchmark_key=$(func_parser_key "${lines[18]}")
    benchmark_value=$(func_parser_value "${lines[18]}")
    infer_key1=$(func_parser_key "${lines[19]}")
    infer_value1=$(func_parser_value "${lines[19]}")
L
LDOUBLEV 已提交
126
fi
M
MissPenguin 已提交
127

L
rename  
LDOUBLEV 已提交
128
LOG_PATH="./test_tipc/output"
M
MissPenguin 已提交
129
mkdir -p ${LOG_PATH}
L
LDOUBLEV 已提交
130
status_log="${LOG_PATH}/results_python.log"
M
MissPenguin 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149


function func_inference(){
    IFS='|'
    _python=$1
    _script=$2
    _model_dir=$3
    _log_path=$4
    _img_dir=$5
    _flag_quant=$6
    # inference 
    for use_gpu in ${use_gpu_list[*]}; do
        if [ ${use_gpu} = "False" ] || [ ${use_gpu} = "cpu" ]; then
            for use_mkldnn in ${use_mkldnn_list[*]}; do
                if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then
                    continue
                fi
                for threads in ${cpu_threads_list[*]}; do
                    for batch_size in ${batch_size_list[*]}; do
L
LDOUBLEV 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162
                        for precision in ${precision_list[*]}; do
                            if [ ${use_mkldnn} = "False" ] && [ ${precision} = "fp16" ]; then
                                continue
                            fi # skip when enable fp16 but disable mkldnn
                            if [ ${_flag_quant} = "True" ] && [ ${precision} != "int8" ]; then
                                continue
                            fi # skip when quant model inference but precision is not int8
                            set_precision=$(func_set_params "${precision_key}" "${precision}")
                            
                            _save_log_path="${_log_path}/python_infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_precision_${precision}_batchsize_${batch_size}.log"
                            set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
                            set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
                            set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
littletomatodonkey's avatar
littletomatodonkey 已提交
163
                            set_mkldnn=$(func_set_params "${use_mkldnn_key}" "${use_mkldnn}")
L
LDOUBLEV 已提交
164 165
                            set_cpu_threads=$(func_set_params "${cpu_threads_key}" "${threads}")
                            set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
L
LDOUBLEV 已提交
166
                            set_infer_params0=$(func_set_params "${save_log_key}" "${save_log_value}")
L
LDOUBLEV 已提交
167
                            set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}")
littletomatodonkey's avatar
littletomatodonkey 已提交
168
                            command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${set_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_params0} ${set_infer_data} ${set_benchmark} ${set_precision} ${set_infer_params1} > ${_save_log_path} 2>&1 "
L
LDOUBLEV 已提交
169 170 171 172 173
                            eval $command
                            last_status=${PIPESTATUS[0]}
                            eval "cat ${_save_log_path}"
                            status_check $last_status "${command}" "${status_log}"
                        done
M
MissPenguin 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
                    done
                done
            done
        elif [ ${use_gpu} = "True" ] || [ ${use_gpu} = "gpu" ]; then
            for use_trt in ${use_trt_list[*]}; do
                for precision in ${precision_list[*]}; do
                    if [[ ${_flag_quant} = "False" ]] && [[ ${precision} =~ "int8" ]]; then
                        continue
                    fi 
                    if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then
                        continue
                    fi
                    if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [ ${_flag_quant} = "True" ]; then
                        continue
                    fi
                    for batch_size in ${batch_size_list[*]}; do
L
LDOUBLEV 已提交
190
                        _save_log_path="${_log_path}/python_infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log"
M
MissPenguin 已提交
191 192 193 194 195 196
                        set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
                        set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
                        set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
                        set_tensorrt=$(func_set_params "${use_trt_key}" "${use_trt}")
                        set_precision=$(func_set_params "${precision_key}" "${precision}")
                        set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
L
LDOUBLEV 已提交
197
                        set_infer_params0=$(func_set_params "${save_log_key}" "${save_log_value}")
M
MissPenguin 已提交
198
                        set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}")
L
LDOUBLEV 已提交
199
                        command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} ${set_infer_params0} > ${_save_log_path} 2>&1 "
M
MissPenguin 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213
                        eval $command
                        last_status=${PIPESTATUS[0]}
                        eval "cat ${_save_log_path}"
                        status_check $last_status "${command}" "${status_log}"
                        
                    done
                done
            done
        else
            echo "Does not support hardware other than CPU and GPU Currently!"
        fi
    done
}

L
rename  
LDOUBLEV 已提交
214
if [ ${MODE} = "whole_infer" ] || [ ${MODE} = "klquant_whole_infer" ]; then
L
LDOUBLEV 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
    GPUID=$3
    if [ ${#GPUID} -le 0 ];then
        env=" "
    else
        env="export CUDA_VISIBLE_DEVICES=${GPUID}"
    fi
    # set CUDA_VISIBLE_DEVICES
    eval $env
    export Count=0
    IFS="|"
    infer_run_exports=(${infer_export_list})
    infer_quant_flag=(${infer_is_quant})
    for infer_model in ${infer_model_dir_list[*]}; do
        # run export
        if [ ${infer_run_exports[Count]} != "null" ];then
            save_infer_dir=$(dirname $infer_model)
            set_export_weight=$(func_set_params "${export_weight}" "${infer_model}")
            set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_dir}")
            export_cmd="${python} ${infer_run_exports[Count]} ${set_export_weight} ${set_save_infer_key}"
            echo ${infer_run_exports[Count]} 
T
tink2123 已提交
235
            echo $export_cmd
L
LDOUBLEV 已提交
236 237 238 239 240 241 242 243
            eval $export_cmd
            status_export=$?
            status_check $status_export "${export_cmd}" "${status_log}"
        else
            save_infer_dir=${infer_model}
        fi
        #run inference
        is_quant=${infer_quant_flag[Count]}
L
fix bug  
LDOUBLEV 已提交
244
        if [ ${MODE} = "klquant_whole_infer" ]; then
L
LDOUBLEV 已提交
245 246
            is_quant="True"
        fi
L
LDOUBLEV 已提交
247 248 249
        func_inference "${python}" "${inference_py}" "${save_infer_dir}" "${LOG_PATH}" "${infer_img_dir}" ${is_quant}
        Count=$(($Count + 1))
    done
M
MissPenguin 已提交
250
else
L
LDOUBLEV 已提交
251 252 253 254
    IFS="|"
    export Count=0
    USE_GPU_KEY=(${train_use_gpu_value})
    for gpu in ${gpu_list[*]}; do
S
stephon 已提交
255
        train_use_gpu=${USE_GPU_KEY[Count]}
L
LDOUBLEV 已提交
256
        Count=$(($Count + 1))
B
Bin Lu 已提交
257
        ips=""
L
LDOUBLEV 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
        if [ ${gpu} = "-1" ];then
            env=""
        elif [ ${#gpu} -le 1 ];then
            env="export CUDA_VISIBLE_DEVICES=${gpu}"
            eval ${env}
        elif [ ${#gpu} -le 15 ];then
            IFS=","
            array=(${gpu})
            env="export CUDA_VISIBLE_DEVICES=${array[0]}"
            IFS="|"
        else
            IFS=";"
            array=(${gpu})
            ips=${array[0]}
            gpu=${array[1]}
            IFS="|"
            env=" "
        fi
        for autocast in ${autocast_list[*]}; do 
S
stephon 已提交
277
            if [ ${autocast} = "amp" ]; then
B
Bin Lu 已提交
278
                set_amp_config="Global.use_amp=True Global.scale_loss=1024.0 Global.use_dynamic_loss_scaling=True"
S
stephon 已提交
279 280 281
            else
                set_amp_config=" "
            fi          
L
LDOUBLEV 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
            for trainer in ${trainer_list[*]}; do 
                flag_quant=False
                if [ ${trainer} = ${pact_key} ]; then
                    run_train=${pact_trainer}
                    run_export=${pact_export}
                    flag_quant=True
                elif [ ${trainer} = "${fpgm_key}" ]; then
                    run_train=${fpgm_trainer}
                    run_export=${fpgm_export}
                elif [ ${trainer} = "${distill_key}" ]; then
                    run_train=${distill_trainer}
                    run_export=${distill_export}
                elif [ ${trainer} = ${trainer_key1} ]; then
                    run_train=${trainer_value1}
                    run_export=${export_value1}
                elif [[ ${trainer} = ${trainer_key2} ]]; then
                    run_train=${trainer_value2}
                    run_export=${export_value2}
                else
                    run_train=${norm_trainer}
                    run_export=${norm_export}
                fi

                if [ ${run_train} = "null" ]; then
                    continue
                fi
                set_autocast=$(func_set_params "${autocast_key}" "${autocast}")
                set_epoch=$(func_set_params "${epoch_key}" "${epoch_num}")
                set_pretrain=$(func_set_params "${pretrain_model_key}" "${pretrain_model_value}")
                set_batchsize=$(func_set_params "${train_batch_key}" "${train_batch_value}")
                set_train_params1=$(func_set_params "${train_param_key1}" "${train_param_value1}")
S
stephon 已提交
313
                set_use_gpu=$(func_set_params "${train_use_gpu_key}" "${train_use_gpu}")
S
stephon 已提交
314 315
                if [ ${#ips} -le 26 ];then
                    save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}"
S
stephon 已提交
316
                    nodes=1
S
stephon 已提交
317 318 319 320 321 322 323 324
                else
                    IFS=","
                    ips_array=(${ips})
                    IFS="|"
                    nodes=${#ips_array[@]}
                    save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_${nodes}"
                fi

L
LDOUBLEV 已提交
325
                # load pretrain from norm training if current trainer is pact or fpgm trainer
S
stephon 已提交
326
                if ([ ${trainer} = ${pact_key} ] || [ ${trainer} = ${fpgm_key} ]) && [ ${nodes} -le 1 ]; then
L
LDOUBLEV 已提交
327 328
                    set_pretrain="${load_norm_train_model}"
                fi
M
MissPenguin 已提交
329

L
LDOUBLEV 已提交
330 331
                set_save_model=$(func_set_params "${save_model_key}" "${save_log}")
                if [ ${#gpu} -le 2 ];then  # train with cpu or single gpu
S
stephon 已提交
332
                    cmd="${python} ${run_train} ${set_use_gpu}  ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1} ${set_amp_config} "
B
Bin Lu 已提交
333 334
                elif [ ${#ips} -le 26 ];then  # train with multi-gpu
                    cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1} ${set_amp_config}"
L
LDOUBLEV 已提交
335
                else     # train with multi-machine
S
stephon 已提交
336
                    cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${set_use_gpu} ${set_save_model} ${set_pretrain} ${set_epoch} ${set_autocast} ${set_batchsize} ${set_train_params1} ${set_amp_config}"
L
LDOUBLEV 已提交
337 338 339 340 341 342 343 344
                fi
                # run train
                eval "unset CUDA_VISIBLE_DEVICES"
                eval $cmd
                status_check $? "${cmd}" "${status_log}"

                set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/${train_model_name}")
                # save norm trained models to set pretrain for pact training and fpgm training 
T
tink2123 已提交
345
                if [ ${trainer} = ${trainer_norm} ] && [ ${nodes} -le 1 ]; then
L
LDOUBLEV 已提交
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
                    load_norm_train_model=${set_eval_pretrain}
                fi
                # run eval 
                if [ ${eval_py} != "null" ]; then
                    set_eval_params1=$(func_set_params "${eval_key1}" "${eval_value1}")
                    eval_cmd="${python} ${eval_py} ${set_eval_pretrain} ${set_use_gpu} ${set_eval_params1}" 
                    eval $eval_cmd
                    status_check $? "${eval_cmd}" "${status_log}"
                fi
                # run export model
                if [ ${run_export} != "null" ]; then 
                    # run export model
                    save_infer_path="${save_log}"
                    set_export_weight=$(func_set_params "${export_weight}" "${save_log}/${train_model_name}")
                    set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_path}")
                    export_cmd="${python} ${run_export} ${set_export_weight} ${set_save_infer_key}"
                    eval $export_cmd
                    status_check $? "${export_cmd}" "${status_log}"

                    #run inference
                    eval $env
                    save_infer_path="${save_log}"
T
tink2123 已提交
368
                    if [[ ${inference_dir} != "null" ]] && [[ ${inference_dir} != '##' ]]; then
L
LDOUBLEV 已提交
369 370 371 372 373 374
                        infer_model_dir="${save_infer_path}/${inference_dir}"
                    else
                        infer_model_dir=${save_infer_path}
                    fi
                    func_inference "${python}" "${inference_py}" "${infer_model_dir}" "${LOG_PATH}" "${train_infer_img_dir}" "${flag_quant}"
                    
L
LDOUBLEV 已提交
375 376 377 378 379 380
                    eval "unset CUDA_VISIBLE_DEVICES"
                fi
            done  # done with:    for trainer in ${trainer_list[*]}; do 
        done      # done with:    for autocast in ${autocast_list[*]}; do 
    done          # done with:    for gpu in ${gpu_list[*]}; do
fi  # end if [ ${MODE} = "infer" ]; then
M
MissPenguin 已提交
381