matcher.py 7.2 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
import json
def distance(box_1, box_2):
        x1, y1, x2, y2 = box_1
        x3, y3, x4, y4 = box_2
        # min_x = (x1 + x2) / 2
        # min_y = (y1 + y2) / 2
        # max_x = (x3 + x4) / 2
        # max_y = (y3 + y4) / 2
        dis = abs(x3 - x1) + abs(y3 - y1) + abs(x4- x2) + abs(y4 - y2)
        dis_2 = abs(x3 - x1) + abs(y3 - y1)
        dis_3 = abs(x4- x2) + abs(y4 - y2)
        #dis = pow(min_x - max_x, 2) + pow(min_y - max_y, 2) + pow(x3 - x1, 2) + pow(y3 - y1, 2) + pow(x4- x2, 2) + pow(y4 - y2, 2) + abs(x3 - x1) + abs(y3 - y1) + abs(x4- x2) + abs(y4 - y2)
        return dis + min(dis_2, dis_3)

def compute_iou(rec1, rec2):
    """
    computing IoU
    :param rec1: (y0, x0, y1, x1), which reflects
            (top, left, bottom, right)
    :param rec2: (y0, x0, y1, x1)
    :return: scala value of IoU
    """
    # computing area of each rectangles
    rec1, rec2 = rec1 * 1000, rec2 * 1000
    S_rec1 = (rec1[2] - rec1[0]) * (rec1[3] - rec1[1])
    S_rec2 = (rec2[2] - rec2[0]) * (rec2[3] - rec2[1])
 
    # computing the sum_area
    sum_area = S_rec1 + S_rec2
 
    # find the each edge of intersect rectangle
    left_line = max(rec1[1], rec2[1])
    right_line = min(rec1[3], rec2[3])
    top_line = max(rec1[0], rec2[0])
    bottom_line = min(rec1[2], rec2[2])
 
    # judge if there is an intersect
    if left_line >= right_line or top_line >= bottom_line:
        return 0
    else:
        intersect = (right_line - left_line) * (bottom_line - top_line)
        return (intersect / (sum_area - intersect))*1.0
 


def matcher_merge(ocr_bboxes, pred_bboxes): # ocr_bboxes: OCR pred_bboxes:端到端
    all_dis = []
    ious = []
    matched = {}
    for i, gt_box in enumerate(ocr_bboxes):
        distances = []
        for j, pred_box in enumerate(pred_bboxes):
            distances.append((distance(gt_box, pred_box), 1. - compute_iou(gt_box, pred_box))) #获取两两cell之间的L1距离和 1- IOU
        sorted_distances = distances.copy()
        # 根据距离和IOU挑选最"近"的cell
        sorted_distances = sorted(sorted_distances, key = lambda item: (item[1], item[0])) 
        if distances.index(sorted_distances[0]) not in matched.keys(): 
            matched[distances.index(sorted_distances[0])] = [i]
        else:
            matched[distances.index(sorted_distances[0])].append(i)
    return matched#, sum(ious) / len(ious)
def complex_num(pred_bboxes):
    complex_nums = []
    for bbox in pred_bboxes:
        distances = []
        temp_ious = []
        for pred_bbox in pred_bboxes:
            if bbox != pred_bbox:
                distances.append(distance(bbox, pred_bbox))
                temp_ious.append(compute_iou(bbox, pred_bbox))
        complex_nums.append(temp_ious[distances.index(min(distances))])
    return sum(complex_nums) / len(complex_nums)

def get_rows(pred_bboxes):
    pre_bbox = pred_bboxes[0]
    res = []
    step = 0
    for i in range(len(pred_bboxes)):
        bbox = pred_bboxes[i]
        if bbox[1] - pre_bbox[1] > 2 or bbox[0] - pre_bbox[0] < 0:
            break
        else:
            res.append(bbox)
            step += 1
    for i in range(step):
        pred_bboxes.pop(0)
    return res, pred_bboxes
def refine_rows(pred_bboxes): # 微调整行的框,使在一条水平线上
    ys_1 = []
    ys_2 = []
    for box in pred_bboxes:
        ys_1.append(box[1])
        ys_2.append(box[3])
    min_y_1 = sum(ys_1) / len(ys_1)
    min_y_2 = sum(ys_2) / len(ys_2)
    re_boxes = []
    for box in pred_bboxes:
        box[1] = min_y_1
        box[3] = min_y_2
        re_boxes.append(box)
    return re_boxes
    
def matcher_refine_row(gt_bboxes, pred_bboxes):
    before_refine_pred_bboxes = pred_bboxes.copy()
    pred_bboxes = []
    while(len(before_refine_pred_bboxes) != 0):
        row_bboxes, before_refine_pred_bboxes = get_rows(before_refine_pred_bboxes)
        print(row_bboxes)
        pred_bboxes.extend(refine_rows(row_bboxes))
    all_dis = []
    ious = []
    matched = {}
    for i, gt_box in enumerate(gt_bboxes):
        distances = []
        #temp_ious = []
        for j, pred_box in enumerate(pred_bboxes):
            distances.append(distance(gt_box, pred_box))
            #temp_ious.append(compute_iou(gt_box, pred_box))
        #all_dis.append(min(distances))
        #ious.append(temp_ious[distances.index(min(distances))])
        if distances.index(min(distances)) not in matched.keys(): 
            matched[distances.index(min(distances))] = [i]
        else:
            matched[distances.index(min(distances))].append(i)
    return matched#, sum(ious) / len(ious)



#先挑选出一行,再进行匹配
def matcher_structure_1(gt_bboxes, pred_bboxes_rows, pred_bboxes):
    gt_box_index = 0
    delete_gt_bboxes = gt_bboxes.copy()
    match_bboxes_ready = []
    matched = {}
    while(len(delete_gt_bboxes) != 0):
        row_bboxes, delete_gt_bboxes = get_rows(delete_gt_bboxes)
        row_bboxes = sorted(row_bboxes, key = lambda key: key[0])
        if len(pred_bboxes_rows) > 0:
            match_bboxes_ready.extend(pred_bboxes_rows.pop(0))
        print(row_bboxes)
        for i, gt_box in enumerate(row_bboxes):
            #print(gt_box)
            pred_distances = []
            distances = []  
            for pred_bbox in pred_bboxes:
                pred_distances.append(distance(gt_box, pred_bbox))
            for j, pred_box in enumerate(match_bboxes_ready):
                distances.append(distance(gt_box, pred_box))
            index = pred_distances.index(min(distances))
            #print('index', index)
            if index not in matched.keys(): 
                matched[index] = [gt_box_index]
            else:
                matched[index].append(gt_box_index)
            gt_box_index += 1
    return matched

def matcher_structure(gt_bboxes, pred_bboxes_rows, pred_bboxes):
    '''
    gt_bboxes: 排序后
    pred_bboxes: 
    '''
    pre_bbox = gt_bboxes[0]
    matched = {}
    match_bboxes_ready = []
    match_bboxes_ready.extend(pred_bboxes_rows.pop(0))
    for i, gt_box in enumerate(gt_bboxes):
        
        pred_distances = []
        for pred_bbox in pred_bboxes:
            pred_distances.append(distance(gt_box, pred_bbox))
        distances = []
        gap_pre = gt_box[1] - pre_bbox[1]
        gap_pre_1 = gt_box[0] - pre_bbox[2]
        #print(gap_pre, len(pred_bboxes_rows))
        if (gap_pre_1 < 0 and len(pred_bboxes_rows) > 0):
            match_bboxes_ready.extend(pred_bboxes_rows.pop(0))
        if len(pred_bboxes_rows) == 1:
            match_bboxes_ready.extend(pred_bboxes_rows.pop(0))
        if len(match_bboxes_ready) == 0 and len(pred_bboxes_rows) > 0:
            match_bboxes_ready.extend(pred_bboxes_rows.pop(0))
        if len(match_bboxes_ready) == 0 and len(pred_bboxes_rows) == 0:
            break
        #print(match_bboxes_ready)
        for j, pred_box in enumerate(match_bboxes_ready):
            distances.append(distance(gt_box, pred_box))
        index = pred_distances.index(min(distances))
        #print(gt_box, index)
        #match_bboxes_ready.pop(distances.index(min(distances)))
        print(gt_box, match_bboxes_ready[distances.index(min(distances))])
        if index not in matched.keys(): 
            matched[index] = [i]
        else:
            matched[index].append(i)
        pre_bbox = gt_box
    return matched