predict_system.py 8.1 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15
import os
import sys
L
LDOUBLEV 已提交
16
import subprocess
W
WenmuZhou 已提交
17

18
__dir__ = os.path.dirname(os.path.abspath(__file__))
19
sys.path.append(__dir__)
20
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
L
LDOUBLEV 已提交
21

L
LDOUBLEV 已提交
22 23
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

L
LDOUBLEV 已提交
24 25 26 27
import cv2
import copy
import numpy as np
import time
W
WenmuZhou 已提交
28
import logging
L
LDOUBLEV 已提交
29
from PIL import Image
W
WenmuZhou 已提交
30 31 32
import tools.infer.utility as utility
import tools.infer.predict_rec as predict_rec
import tools.infer.predict_det as predict_det
W
WenmuZhou 已提交
33
import tools.infer.predict_cls as predict_cls
W
WenmuZhou 已提交
34 35
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
from ppocr.utils.logging import get_logger
L
LDOUBLEV 已提交
36 37
from tools.infer.utility import draw_ocr_box_txt, get_current_memory_mb
import tools.infer.benchmark_utils as benchmark_utils
W
WenmuZhou 已提交
38 39
logger = get_logger()

L
LDOUBLEV 已提交
40 41 42

class TextSystem(object):
    def __init__(self, args):
W
WenmuZhou 已提交
43 44 45
        if not args.show_log:
            logger.setLevel(logging.INFO)

L
LDOUBLEV 已提交
46 47
        self.text_detector = predict_det.TextDetector(args)
        self.text_recognizer = predict_rec.TextRecognizer(args)
W
WenmuZhou 已提交
48
        self.use_angle_cls = args.use_angle_cls
W
WenmuZhou 已提交
49
        self.drop_score = args.drop_score
W
WenmuZhou 已提交
50 51
        if self.use_angle_cls:
            self.text_classifier = predict_cls.TextClassifier(args)
L
LDOUBLEV 已提交
52 53

    def get_rotate_crop_image(self, img, points):
54
        '''
L
LDOUBLEV 已提交
55 56 57 58 59 60 61 62
        img_height, img_width = img.shape[0:2]
        left = int(np.min(points[:, 0]))
        right = int(np.max(points[:, 0]))
        top = int(np.min(points[:, 1]))
        bottom = int(np.max(points[:, 1]))
        img_crop = img[top:bottom, left:right, :].copy()
        points[:, 0] = points[:, 0] - left
        points[:, 1] = points[:, 1] - top
63
        '''
L
LDOUBLEV 已提交
64 65 66 67 68 69 70 71 72
        img_crop_width = int(
            max(
                np.linalg.norm(points[0] - points[1]),
                np.linalg.norm(points[2] - points[3])))
        img_crop_height = int(
            max(
                np.linalg.norm(points[0] - points[3]),
                np.linalg.norm(points[1] - points[2])))
        pts_std = np.float32([[0, 0], [img_crop_width, 0],
73 74
                              [img_crop_width, img_crop_height],
                              [0, img_crop_height]])
L
LDOUBLEV 已提交
75
        M = cv2.getPerspectiveTransform(points, pts_std)
L
LDOUBLEV 已提交
76 77 78 79 80
        dst_img = cv2.warpPerspective(
            img,
            M, (img_crop_width, img_crop_height),
            borderMode=cv2.BORDER_REPLICATE,
            flags=cv2.INTER_CUBIC)
L
LDOUBLEV 已提交
81 82 83 84 85 86 87 88 89
        dst_img_height, dst_img_width = dst_img.shape[0:2]
        if dst_img_height * 1.0 / dst_img_width >= 1.5:
            dst_img = np.rot90(dst_img)
        return dst_img

    def print_draw_crop_rec_res(self, img_crop_list, rec_res):
        bbox_num = len(img_crop_list)
        for bno in range(bbox_num):
            cv2.imwrite("./output/img_crop_%d.jpg" % bno, img_crop_list[bno])
W
WenmuZhou 已提交
90
            logger.info(bno, rec_res[bno])
L
LDOUBLEV 已提交
91

92
    def __call__(self, img, cls=True):
L
LDOUBLEV 已提交
93 94
        ori_im = img.copy()
        dt_boxes, elapse = self.text_detector(img)
L
LDOUBLEV 已提交
95

W
WenmuZhou 已提交
96
        logger.debug("dt_boxes num : {}, elapse : {}".format(
W
WenmuZhou 已提交
97
            len(dt_boxes), elapse))
L
LDOUBLEV 已提交
98 99 100
        if dt_boxes is None:
            return None, None
        img_crop_list = []
101 102 103

        dt_boxes = sorted_boxes(dt_boxes)

L
LDOUBLEV 已提交
104 105 106 107
        for bno in range(len(dt_boxes)):
            tmp_box = copy.deepcopy(dt_boxes[bno])
            img_crop = self.get_rotate_crop_image(ori_im, tmp_box)
            img_crop_list.append(img_crop)
108
        if self.use_angle_cls and cls:
W
WenmuZhou 已提交
109 110
            img_crop_list, angle_list, elapse = self.text_classifier(
                img_crop_list)
W
WenmuZhou 已提交
111
            logger.debug("cls num  : {}, elapse : {}".format(
W
WenmuZhou 已提交
112 113
                len(img_crop_list), elapse))

L
LDOUBLEV 已提交
114
        rec_res, elapse = self.text_recognizer(img_crop_list)
W
WenmuZhou 已提交
115
        logger.debug("rec_res num  : {}, elapse : {}".format(
W
WenmuZhou 已提交
116
            len(rec_res), elapse))
117
        # self.print_draw_crop_rec_res(img_crop_list, rec_res)
W
WenmuZhou 已提交
118 119 120 121 122 123 124
        filter_boxes, filter_rec_res = [], []
        for box, rec_reuslt in zip(dt_boxes, rec_res):
            text, score = rec_reuslt
            if score >= self.drop_score:
                filter_boxes.append(box)
                filter_rec_res.append(rec_reuslt)
        return filter_boxes, filter_rec_res
L
LDOUBLEV 已提交
125 126


127 128 129 130
def sorted_boxes(dt_boxes):
    """
    Sort text boxes in order from top to bottom, left to right
    args:
T
tink2123 已提交
131
        dt_boxes(array):detected text boxes with shape [4, 2]
132 133 134 135
    return:
        sorted boxes(array) with shape [4, 2]
    """
    num_boxes = dt_boxes.shape[0]
136
    sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
137 138 139
    _boxes = list(sorted_boxes)

    for i in range(num_boxes - 1):
W
WenmuZhou 已提交
140 141
        if abs(_boxes[i + 1][0][1] - _boxes[i][0][1]) < 10 and \
                (_boxes[i + 1][0][0] < _boxes[i][0][0]):
142 143 144 145 146 147
            tmp = _boxes[i]
            _boxes[i] = _boxes[i + 1]
            _boxes[i + 1] = tmp
    return _boxes


148
def main(args):
L
LDOUBLEV 已提交
149
    image_file_list = get_image_file_list(args.image_dir)
L
LDOUBLEV 已提交
150
    image_file_list = image_file_list[args.process_id::args.total_process_num]
L
LDOUBLEV 已提交
151
    text_sys = TextSystem(args)
L
LDOUBLEV 已提交
152
    is_visualize = True
W
WenmuZhou 已提交
153
    font_path = args.vis_font_path
W
WenmuZhou 已提交
154
    drop_score = args.drop_score
D
Double_V 已提交
155

L
LDOUBLEV 已提交
156 157 158 159 160
    # warm up 10 times
    if args.warmup:
        img = np.random.uniform(0, 255, [640, 640, 3]).astype(np.uint8)
        for i in range(10):
            res = text_sys(img)
L
LDOUBLEV 已提交
161

L
LDOUBLEV 已提交
162 163 164 165 166
    total_time = 0
    cpu_mem, gpu_mem, gpu_util = 0, 0, 0
    _st = time.time()
    count = 0
    for idx, image_file in enumerate(image_file_list):
L
LDOUBLEV 已提交
167

L
LDOUBLEV 已提交
168 169 170
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
L
LDOUBLEV 已提交
171
        if img is None:
172
            logger.info("error in loading image:{}".format(image_file))
L
LDOUBLEV 已提交
173 174 175 176
            continue
        starttime = time.time()
        dt_boxes, rec_res = text_sys(img)
        elapse = time.time() - starttime
L
LDOUBLEV 已提交
177
        total_time += elapse
L
LDOUBLEV 已提交
178

L
LDOUBLEV 已提交
179 180
        logger.info(
            str(idx) + "  Predict time of %s: %.3fs" % (image_file, elapse))
W
WenmuZhou 已提交
181 182
        for text, score in rec_res:
            logger.info("{}, {:.3f}".format(text, score))
L
LDOUBLEV 已提交
183 184 185 186 187 188 189

        if is_visualize:
            image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
            boxes = dt_boxes
            txts = [rec_res[i][0] for i in range(len(rec_res))]
            scores = [rec_res[i][1] for i in range(len(rec_res))]

W
WenmuZhou 已提交
190 191 192 193 194 195 196
            draw_img = draw_ocr_box_txt(
                image,
                boxes,
                txts,
                scores,
                drop_score=drop_score,
                font_path=font_path)
197
            draw_img_save = "./inference_results/"
L
LDOUBLEV 已提交
198 199
            if not os.path.exists(draw_img_save):
                os.makedirs(draw_img_save)
L
LDOUBLEV 已提交
200 201
            if flag:
                image_file = image_file[:-3] + "png"
L
LDOUBLEV 已提交
202 203
            cv2.imwrite(
                os.path.join(draw_img_save, os.path.basename(image_file)),
D
dyning 已提交
204
                draw_img[:, :, ::-1])
W
WenmuZhou 已提交
205
            logger.info("The visualized image saved in {}".format(
206
                os.path.join(draw_img_save, os.path.basename(image_file))))
207

L
LDOUBLEV 已提交
208 209
    logger.info("The predict total time is {}".format(time.time() - _st))
    logger.info("\nThe predict total time is {}".format(total_time))
210

L
LDOUBLEV 已提交
211 212 213 214
    img_num = text_sys.text_detector.det_times.img_num


if __name__ == "__main__":
L
LDOUBLEV 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
    args = utility.parse_args()
    if args.use_mp:
        p_list = []
        total_process_num = args.total_process_num
        for process_id in range(total_process_num):
            cmd = [sys.executable, "-u"] + sys.argv + [
                "--process_id={}".format(process_id),
                "--use_mp={}".format(False)
            ]
            p = subprocess.Popen(cmd, stdout=sys.stdout, stderr=sys.stdout)
            p_list.append(p)
        for p in p_list:
            p.wait()
    else:
        main(args)