table_mv3.yml 2.7 KB
Newer Older
M
MissPenguin 已提交
1 2
Global:
  use_gpu: true
3
  epoch_num: 400
M
MissPenguin 已提交
4 5 6
  log_smooth_window: 20
  print_batch_step: 5
  save_model_dir: ./output/table_mv3/
7
  save_epoch_step: 3
M
refine  
MissPenguin 已提交
8
  # evaluation is run every 400 iterations after the 0th iteration
M
MissPenguin 已提交
9 10
  eval_batch_step: [0, 400]
  cal_metric_during_train: True
11
  pretrained_model:
M
MissPenguin 已提交
12 13 14
  checkpoints: 
  save_inference_dir:
  use_visualdl: False
15
  infer_img: doc/table/table.jpg
M
MissPenguin 已提交
16 17 18 19
  # for data or label process
  character_dict_path: ppocr/utils/dict/table_structure_dict.txt
  character_type: en
  max_text_length: 100
20
  max_elem_length: 800
M
MissPenguin 已提交
21 22 23 24 25 26 27 28 29 30 31
  max_cell_num: 500
  infer_mode: False
  process_total_num: 0
  process_cut_num: 0

Optimizer:
  name: Adam
  beta1: 0.9
  beta2: 0.999
  clip_norm: 5.0
  lr:
M
refine  
MissPenguin 已提交
32
    learning_rate: 0.001
M
MissPenguin 已提交
33 34 35 36 37 38 39 40 41 42
  regularizer:
    name: 'L2'
    factor: 0.00000

Architecture:
  model_type: table
  algorithm: TableAttn
  Backbone:
    name: MobileNetV3
    scale: 1.0
43
    model_name: large
M
MissPenguin 已提交
44
  Head:
M
refine  
MissPenguin 已提交
45 46
    name: TableAttentionHead
    hidden_size: 256
M
MissPenguin 已提交
47 48
    l2_decay: 0.00001
    loc_type: 2
49 50 51
    max_text_length: 100
    max_elem_length: 800
    max_cell_num: 500
M
MissPenguin 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89

Loss:
  name: TableAttentionLoss
  structure_weight: 100.0
  loc_weight: 10000.0

PostProcess:
  name: TableLabelDecode

Metric:
  name: TableMetric
  main_indicator: acc

Train:
  dataset:
    name: PubTabDataSet
    data_dir: train_data/table/pubtabnet/train/
    label_file_path: train_data/table/pubtabnet/PubTabNet_2.0.0_train.jsonl
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - ResizeTableImage:
          max_len: 488
      - TableLabelEncode:
      - NormalizeImage:
          scale: 1./255.
          mean: [0.485, 0.456, 0.406]
          std: [0.229, 0.224, 0.225]
          order: 'hwc'
      - PaddingTableImage:
      - ToCHWImage:
      - KeepKeys:
          keep_keys: ['image', 'structure', 'bbox_list', 'sp_tokens', 'bbox_list_mask']
  loader:
    shuffle: True
    batch_size_per_card: 32
    drop_last: True
M
refine  
MissPenguin 已提交
90
    num_workers: 1
M
MissPenguin 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

Eval:
  dataset:
    name: PubTabDataSet
    data_dir: train_data/table/pubtabnet/val/
    label_file_path: train_data/table/pubtabnet/PubTabNet_2.0.0_val.jsonl
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - ResizeTableImage:
          max_len: 488
      - TableLabelEncode:
      - NormalizeImage:
          scale: 1./255.
          mean: [0.485, 0.456, 0.406]
          std: [0.229, 0.224, 0.225]
          order: 'hwc'
      - PaddingTableImage:
      - ToCHWImage:
      - KeepKeys:
          keep_keys: ['image', 'structure', 'bbox_list', 'sp_tokens', 'bbox_list_mask']
  loader:
    shuffle: False
    drop_last: False
    batch_size_per_card: 16
M
refine  
MissPenguin 已提交
117
    num_workers: 1