metric.py 6.4 KB
Newer Older
文幕地方's avatar
add re  
文幕地方 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import re

import numpy as np

import logging

logger = logging.getLogger(__name__)

PREFIX_CHECKPOINT_DIR = "checkpoint"
_re_checkpoint = re.compile(r"^" + PREFIX_CHECKPOINT_DIR + r"\-(\d+)$")


def get_last_checkpoint(folder):
    content = os.listdir(folder)
    checkpoints = [
        path for path in content
        if _re_checkpoint.search(path) is not None and os.path.isdir(
            os.path.join(folder, path))
    ]
    if len(checkpoints) == 0:
        return
    return os.path.join(
        folder,
        max(checkpoints,
            key=lambda x: int(_re_checkpoint.search(x).groups()[0])))


def re_score(pred_relations, gt_relations, mode="strict"):
    """Evaluate RE predictions

    Args:
        pred_relations (list) :  list of list of predicted relations (several relations in each sentence)
        gt_relations (list) :    list of list of ground truth relations

            rel = { "head": (start_idx (inclusive), end_idx (exclusive)),
                    "tail": (start_idx (inclusive), end_idx (exclusive)),
                    "head_type": ent_type,
                    "tail_type": ent_type,
                    "type": rel_type}

        vocab (Vocab) :         dataset vocabulary
        mode (str) :            in 'strict' or 'boundaries'"""

    assert mode in ["strict", "boundaries"]

    relation_types = [v for v in [0, 1] if not v == 0]
    scores = {
        rel: {
            "tp": 0,
            "fp": 0,
            "fn": 0
        }
        for rel in relation_types + ["ALL"]
    }

    # Count GT relations and Predicted relations
    n_sents = len(gt_relations)
    n_rels = sum([len([rel for rel in sent]) for sent in gt_relations])
    n_found = sum([len([rel for rel in sent]) for sent in pred_relations])

    # Count TP, FP and FN per type
    for pred_sent, gt_sent in zip(pred_relations, gt_relations):
        for rel_type in relation_types:
            # strict mode takes argument types into account
            if mode == "strict":
                pred_rels = {(rel["head"], rel["head_type"], rel["tail"],
                              rel["tail_type"])
                             for rel in pred_sent if rel["type"] == rel_type}
                gt_rels = {(rel["head"], rel["head_type"], rel["tail"],
                            rel["tail_type"])
                           for rel in gt_sent if rel["type"] == rel_type}

            # boundaries mode only takes argument spans into account
            elif mode == "boundaries":
                pred_rels = {(rel["head"], rel["tail"])
                             for rel in pred_sent if rel["type"] == rel_type}
                gt_rels = {(rel["head"], rel["tail"])
                           for rel in gt_sent if rel["type"] == rel_type}

            scores[rel_type]["tp"] += len(pred_rels & gt_rels)
            scores[rel_type]["fp"] += len(pred_rels - gt_rels)
            scores[rel_type]["fn"] += len(gt_rels - pred_rels)

    # Compute per entity Precision / Recall / F1
    for rel_type in scores.keys():
        if scores[rel_type]["tp"]:
            scores[rel_type]["p"] = scores[rel_type]["tp"] / (
                scores[rel_type]["fp"] + scores[rel_type]["tp"])
            scores[rel_type]["r"] = scores[rel_type]["tp"] / (
                scores[rel_type]["fn"] + scores[rel_type]["tp"])
        else:
            scores[rel_type]["p"], scores[rel_type]["r"] = 0, 0

        if not scores[rel_type]["p"] + scores[rel_type]["r"] == 0:
            scores[rel_type]["f1"] = (
                2 * scores[rel_type]["p"] * scores[rel_type]["r"] /
                (scores[rel_type]["p"] + scores[rel_type]["r"]))
        else:
            scores[rel_type]["f1"] = 0

    # Compute micro F1 Scores
    tp = sum([scores[rel_type]["tp"] for rel_type in relation_types])
    fp = sum([scores[rel_type]["fp"] for rel_type in relation_types])
    fn = sum([scores[rel_type]["fn"] for rel_type in relation_types])

    if tp:
        precision = tp / (tp + fp)
        recall = tp / (tp + fn)
        f1 = 2 * precision * recall / (precision + recall)

    else:
        precision, recall, f1 = 0, 0, 0

    scores["ALL"]["p"] = precision
    scores["ALL"]["r"] = recall
    scores["ALL"]["f1"] = f1
    scores["ALL"]["tp"] = tp
    scores["ALL"]["fp"] = fp
    scores["ALL"]["fn"] = fn

    # Compute Macro F1 Scores
    scores["ALL"]["Macro_f1"] = np.mean(
        [scores[ent_type]["f1"] for ent_type in relation_types])
    scores["ALL"]["Macro_p"] = np.mean(
        [scores[ent_type]["p"] for ent_type in relation_types])
    scores["ALL"]["Macro_r"] = np.mean(
        [scores[ent_type]["r"] for ent_type in relation_types])

    # logger.info(f"RE Evaluation in *** {mode.upper()} *** mode")

    # logger.info(
    #     "processed {} sentences with {} relations; found: {} relations; correct: {}.".format(
    #         n_sents, n_rels, n_found, tp
    #     )
    # )
    # logger.info(
    #     "\tALL\t TP: {};\tFP: {};\tFN: {}".format(scores["ALL"]["tp"], scores["ALL"]["fp"], scores["ALL"]["fn"])
    # )
    # logger.info("\t\t(m avg): precision: {:.2f};\trecall: {:.2f};\tf1: {:.2f} (micro)".format(precision, recall, f1))
    # logger.info(
    #     "\t\t(M avg): precision: {:.2f};\trecall: {:.2f};\tf1: {:.2f} (Macro)\n".format(
    #         scores["ALL"]["Macro_p"], scores["ALL"]["Macro_r"], scores["ALL"]["Macro_f1"]
    #     )
    # )

    # for rel_type in relation_types:
    #     logger.info(
    #         "\t{}: \tTP: {};\tFP: {};\tFN: {};\tprecision: {:.2f};\trecall: {:.2f};\tf1: {:.2f};\t{}".format(
    #             rel_type,
    #             scores[rel_type]["tp"],
    #             scores[rel_type]["fp"],
    #             scores[rel_type]["fn"],
    #             scores[rel_type]["p"],
    #             scores[rel_type]["r"],
    #             scores[rel_type]["f1"],
    #             scores[rel_type]["tp"] + scores[rel_type]["fp"],
    #         )
    #     )

    return scores