module.py 4.2 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8
# -*- coding:utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys
sys.path.insert(0, ".")
9
import copy
W
WenmuZhou 已提交
10 11 12 13 14 15 16 17

from paddlehub.common.logger import logger
from paddlehub.module.module import moduleinfo, runnable, serving
import cv2
import paddlehub as hub

from tools.infer.utility import base64_to_cv2
from tools.infer.predict_cls import TextClassifier
18
from tools.infer.utility import parse_args
L
littletomatodonkey 已提交
19
from deploy.hubserving.ocr_cls.params import read_params
W
WenmuZhou 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33


@moduleinfo(
    name="ocr_cls",
    version="1.0.0",
    summary="ocr recognition service",
    author="paddle-dev",
    author_email="paddle-dev@baidu.com",
    type="cv/text_recognition")
class OCRCls(hub.Module):
    def _initialize(self, use_gpu=False, enable_mkldnn=False):
        """
        initialize with the necessary elements
        """
34
        cfg = self.merge_configs()
W
WenmuZhou 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

        cfg.use_gpu = use_gpu
        if use_gpu:
            try:
                _places = os.environ["CUDA_VISIBLE_DEVICES"]
                int(_places[0])
                print("use gpu: ", use_gpu)
                print("CUDA_VISIBLE_DEVICES: ", _places)
                cfg.gpu_mem = 8000
            except:
                raise RuntimeError(
                    "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES via export CUDA_VISIBLE_DEVICES=cuda_device_id."
                )
        cfg.ir_optim = True
        cfg.enable_mkldnn = enable_mkldnn

        self.text_classifier = TextClassifier(cfg)

53 54 55 56 57 58 59 60 61 62 63 64 65 66
    def merge_configs(self, ):
        # deafult cfg
        backup_argv = copy.deepcopy(sys.argv)
        sys.argv = sys.argv[:1]
        cfg = parse_args()

        update_cfg_map = vars(read_params())

        for key in update_cfg_map:
            cfg.__setattr__(key, update_cfg_map[key])

        sys.argv = copy.deepcopy(backup_argv)
        return cfg

W
WenmuZhou 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
    def read_images(self, paths=[]):
        images = []
        for img_path in paths:
            assert os.path.isfile(
                img_path), "The {} isn't a valid file.".format(img_path)
            img = cv2.imread(img_path)
            if img is None:
                logger.info("error in loading image:{}".format(img_path))
                continue
            images.append(img)
        return images

    def predict(self, images=[], paths=[]):
        """
        Get the text angle in the predicted images.
        Args:
            images (list(numpy.ndarray)): images data, shape of each is [H, W, C]. If images not paths
            paths (list[str]): The paths of images. If paths not images
        Returns:
            res (list): The result of text detection box and save path of images.
        """

        if images != [] and isinstance(images, list) and paths == []:
            predicted_data = images
        elif images == [] and isinstance(paths, list) and paths != []:
            predicted_data = self.read_images(paths)
        else:
            raise TypeError("The input data is inconsistent with expectations.")

        assert predicted_data != [], "There is not any image to be predicted. Please check the input data."

        img_list = []
        for img in predicted_data:
            if img is None:
                continue
            img_list.append(img)

        rec_res_final = []
        try:
            img_list, cls_res, predict_time = self.text_classifier(img_list)
            for dno in range(len(cls_res)):
                angle, score = cls_res[dno]
                rec_res_final.append({
                    'angle': angle,
                    'confidence': float(score),
                })
        except Exception as e:
            print(e)
            return [[]]

        return [rec_res_final]

    @serving
    def serving_method(self, images, **kwargs):
        """
        Run as a service.
        """
        images_decode = [base64_to_cv2(image) for image in images]
        results = self.predict(images_decode, **kwargs)
        return results


if __name__ == '__main__':
    ocr = OCRCls()
    image_path = [
        './doc/imgs_words/ch/word_1.jpg',
        './doc/imgs_words/ch/word_2.jpg',
        './doc/imgs_words/ch/word_3.jpg',
    ]
    res = ocr.predict(paths=image_path)
    print(res)