inference.md 21.3 KB
Newer Older
L
LDOUBLEV 已提交
1

D
dyning 已提交
2
# 基于Python预测引擎推理
L
LDOUBLEV 已提交
3

W
WenmuZhou 已提交
4
inference 模型(`paddle.jit.save`保存的模型)
L
LDOUBLEV 已提交
5 6 7
一般是模型训练,把模型结构和模型参数保存在文件中的固化模型,多用于预测部署场景。
训练过程中保存的模型是checkpoints模型,保存的只有模型的参数,多用于恢复训练等。
与checkpoints模型相比,inference 模型会额外保存模型的结构信息,在预测部署、加速推理上性能优越,灵活方便,适合于实际系统集成。
L
LDOUBLEV 已提交
8

L
LDOUBLEV 已提交
9
接下来首先介绍如何将训练的模型转换成inference模型,然后将依次介绍文本检测、文本角度分类器、文本识别以及三者串联在CPU、GPU上的预测方法。
L
LDOUBLEV 已提交
10

11 12 13

- [一、训练模型转inference模型](#训练模型转inference模型)
    - [检测模型转inference模型](#检测模型转inference模型)
L
licx 已提交
14
    - [识别模型转inference模型](#识别模型转inference模型)  
W
WenmuZhou 已提交
15 16
    - [方向分类模型转inference模型](#方向分类模型转inference模型)  

17 18 19 20
- [二、文本检测模型推理](#文本检测模型推理)
    - [1. 超轻量中文检测模型推理](#超轻量中文检测模型推理)
    - [2. DB文本检测模型推理](#DB文本检测模型推理)
    - [3. EAST文本检测模型推理](#EAST文本检测模型推理)
L
licx 已提交
21
    - [4. SAST文本检测模型推理](#SAST文本检测模型推理)  
W
WenmuZhou 已提交
22

23 24 25
- [三、文本识别模型推理](#文本识别模型推理)
    - [1. 超轻量中文识别模型推理](#超轻量中文识别模型推理)
    - [2. 基于CTC损失的识别模型推理](#基于CTC损失的识别模型推理)
T
tink2123 已提交
26 27 28
    - [3. 基于SRN损失的识别模型推理](#基于SRN损失的识别模型推理)
    - [4. 自定义文本识别字典的推理](#自定义文本识别字典的推理)
    - [5. 多语言模型的推理](#多语言模型的推理)
W
WenmuZhou 已提交
29 30 31 32 33

- [四、方向分类模型推理](#方向识别模型推理)
    - [1. 方向分类模型推理](#方向分类模型推理)

- [五、文本检测、方向分类和文字识别串联推理](#文本检测、方向分类和文字识别串联推理)
34 35
    - [1. 超轻量中文OCR模型推理](#超轻量中文OCR模型推理)
    - [2. 其他模型推理](#其他模型推理)
W
WenmuZhou 已提交
36 37


38
<a name="训练模型转inference模型"></a>
D
dyning 已提交
39
## 一、训练模型转inference模型
40
<a name="检测模型转inference模型"></a>
L
LDOUBLEV 已提交
41 42 43 44
### 检测模型转inference模型

下载超轻量级中文检测模型:
```
W
WenmuZhou 已提交
45
wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar && tar xf ./ch_lite/ch_ppocr_mobile_v2.0_det_train.tar -C ./ch_lite/
L
LDOUBLEV 已提交
46 47 48
```
上述模型是以MobileNetV3为backbone训练的DB算法,将训练好的模型转换成inference模型只需要运行如下命令:
```
W
WenmuZhou 已提交
49 50 51 52 53
# -c 后面设置训练算法的yml配置文件
# -o 配置可选参数
# Global.pretrained_model 参数设置待转换的训练模型地址,不用添加文件后缀 .pdmodel,.pdopt或.pdparams。
# Global.load_static_weights 参数需要设置为 False。
# Global.save_inference_dir参数设置转换的模型将保存的地址。
D
dyning 已提交
54

W
WenmuZhou 已提交
55
python3 tools/export_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_det_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_db/
L
LDOUBLEV 已提交
56
```
W
WenmuZhou 已提交
57
转inference模型时,使用的配置文件和训练时使用的配置文件相同。另外,还需要设置配置文件中的`Global.pretrained_model`参数,其指向训练中保存的模型参数文件。
W
WenmuZhou 已提交
58
转换成功后,在模型保存目录下有三个文件:
L
LDOUBLEV 已提交
59
```
L
LDOUBLEV 已提交
60
inference/det_db/
61 62 63
    ├── inference.pdiparams         # 检测inference模型的参数文件
    ├── inference.pdiparams.info    # 检测inference模型的参数信息,可忽略
    └── inference.pdmodel           # 检测inference模型的program文件
L
LDOUBLEV 已提交
64 65
```

66
<a name="识别模型转inference模型"></a>
L
LDOUBLEV 已提交
67 68 69 70
### 识别模型转inference模型

下载超轻量中文识别模型:
```
W
WenmuZhou 已提交
71
wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar && tar xf ./ch_lite/ch_ppocr_mobile_v2.0_rec_train.tar -C ./ch_lite/
L
LDOUBLEV 已提交
72 73 74 75
```

识别模型转inference模型与检测的方式相同,如下:
```
W
WenmuZhou 已提交
76 77 78 79 80 81
# -c 后面设置训练算法的yml配置文件
# -o 配置可选参数
# Global.pretrained_model 参数设置待转换的训练模型地址,不用添加文件后缀 .pdmodel,.pdopt或.pdparams。
# Global.load_static_weights 参数需要设置为 False。
# Global.save_inference_dir参数设置转换的模型将保存的地址。

W
WenmuZhou 已提交
82
python3 tools/export_model.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_rec_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/rec_crnn/
L
LDOUBLEV 已提交
83
```
L
LDOUBLEV 已提交
84

85
**注意:**如果您是在自己的数据集上训练的模型,并且调整了中文字符的字典文件,请注意修改配置文件中的`character_dict_path`是否是所需要的字典文件。
L
LDOUBLEV 已提交
86

W
WenmuZhou 已提交
87
转换成功后,在目录下有三个文件:
L
LDOUBLEV 已提交
88
```
L
LDOUBLEV 已提交
89
/inference/rec_crnn/
90 91 92
    ├── inference.pdiparams         # 识别inference模型的参数文件
    ├── inference.pdiparams.info    # 识别inference模型的参数信息,可忽略
    └── inference.pdmodel           # 识别inference模型的program文件
L
LDOUBLEV 已提交
93
```
L
LDOUBLEV 已提交
94

W
WenmuZhou 已提交
95 96 97 98 99
<a name="方向分类模型转inference模型"></a>
### 方向分类模型转inference模型

下载方向分类模型:
```
W
WenmuZhou 已提交
100
wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar && tar xf ./ch_lite/ch_ppocr_mobile_v2.0_cls_train.tar -C ./ch_lite/
W
WenmuZhou 已提交
101 102 103 104
```

方向分类模型转inference模型与检测的方式相同,如下:
```
W
WenmuZhou 已提交
105 106 107 108 109
# -c 后面设置训练算法的yml配置文件
# -o 配置可选参数
# Global.pretrained_model 参数设置待转换的训练模型地址,不用添加文件后缀 .pdmodel,.pdopt或.pdparams。
# Global.load_static_weights 参数需要设置为 False。
# Global.save_inference_dir参数设置转换的模型将保存的地址。
W
WenmuZhou 已提交
110

W
WenmuZhou 已提交
111
python3 tools/export_model.py -c configs/cls/cls_mv3.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_cls_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/cls/
W
WenmuZhou 已提交
112 113
```

W
WenmuZhou 已提交
114
转换成功后,在目录下有三个文件:
W
WenmuZhou 已提交
115 116
```
/inference/cls/
117 118 119
    ├── inference.pdiparams         # 分类inference模型的参数文件
    ├── inference.pdiparams.info    # 分类inference模型的参数信息,可忽略
    └── inference.pdmodel           # 分类inference模型的program文件
W
WenmuZhou 已提交
120 121
```

122
<a name="文本检测模型推理"></a>
D
dyning 已提交
123
## 二、文本检测模型推理
L
LDOUBLEV 已提交
124

125
文本检测模型推理,默认使用DB模型的配置参数。当不使用DB模型时,在推理时,需要通过传入相应的参数进行算法适配,细节参考下文。
D
dyning 已提交
126

127 128
<a name="超轻量中文检测模型推理"></a>
### 1. 超轻量中文检测模型推理
D
dyning 已提交
129 130

超轻量中文检测模型推理,可以执行如下命令:
L
LDOUBLEV 已提交
131 132

```
L
LDOUBLEV 已提交
133 134 135
# 下载超轻量中文检测模型:
wget  https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar
tar xf ch_ppocr_mobile_v2.0_det_infer.tar
L
LDOUBLEV 已提交
136
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./ch_ppocr_mobile_v2.0_det_infer/"
L
LDOUBLEV 已提交
137 138
```

139
可视化文本检测结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下:
D
dyning 已提交
140

L
LDOUBLEV 已提交
141
![](../imgs_results/det_res_00018069.jpg)
L
LDOUBLEV 已提交
142

L
LDOUBLEV 已提交
143 144 145
通过参数`limit_type``det_limit_side_len`来对图片的尺寸进行限制,
`litmit_type`可选参数为[`max`, `min`],
`det_limit_size_len` 为正整数,一般设置为32 的倍数,比如960。
L
LDOUBLEV 已提交
146

L
LDOUBLEV 已提交
147 148 149 150 151
参数默认设置为`limit_type='max', det_limit_side_len=960`。表示网络输入图像的最长边不能超过960,
如果超过这个值,会对图像做等宽比的resize操作,确保最长边为`det_limit_side_len`
设置为`limit_type='min', det_limit_side_len=960` 则表示限制图像的最短边为960。

如果输入图片的分辨率比较大,而且想使用更大的分辨率预测,可以设置det_limit_side_len 为想要的值,比如1216:
L
LDOUBLEV 已提交
152
```
L
LDOUBLEV 已提交
153
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det_db/" --det_limit_type=max --det_limit_side_len=1216
D
dyning 已提交
154 155
```

D
dyning 已提交
156
如果想使用CPU进行预测,执行命令如下
D
dyning 已提交
157
```
L
LDOUBLEV 已提交
158
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det_db/"  --use_gpu=False
D
dyning 已提交
159 160
```

161 162
<a name="DB文本检测模型推理"></a>
### 2. DB文本检测模型推理
D
dyning 已提交
163

W
WenmuZhou 已提交
164
首先将DB文本检测训练过程中保存的模型,转换成inference model。以基于Resnet50_vd骨干网络,在ICDAR2015英文数据集训练的模型为例( [模型下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar) ),可以使用如下命令进行转换:
D
dyning 已提交
165

L
LDOUBLEV 已提交
166
```
W
WenmuZhou 已提交
167
python3 tools/export_model.py -c configs/det/det_r50_vd_db.yml -o Global.pretrained_model=./det_r50_vd_db_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_db
D
dyning 已提交
168 169 170 171 172 173 174 175
```

DB文本检测模型推理,可以执行如下命令:

```
python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_db/"
```

176
可视化文本检测结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下:
D
dyning 已提交
177

178
![](../imgs_results/det_res_img_10_db.jpg)
D
dyning 已提交
179

180
**注意**:由于ICDAR2015数据集只有1000张训练图像,且主要针对英文场景,所以上述模型对中文文本图像检测效果会比较差。
D
dyning 已提交
181

182 183
<a name="EAST文本检测模型推理"></a>
### 3. EAST文本检测模型推理
D
dyning 已提交
184

M
MissPenguin 已提交
185
首先将EAST文本检测训练过程中保存的模型,转换成inference model。以基于Resnet50_vd骨干网络,在ICDAR2015英文数据集训练的模型为例( [模型下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_east_v2.0_train.tar) ),可以使用如下命令进行转换:
D
dyning 已提交
186 187

```
W
WenmuZhou 已提交
188
python3 tools/export_model.py -c configs/det/det_r50_vd_east.yml -o Global.pretrained_model=./det_r50_vd_east_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_east
D
dyning 已提交
189 190
```

L
licx 已提交
191
**EAST文本检测模型推理,需要设置参数`--det_algorithm="EAST"`**,可以执行如下命令:
D
dyning 已提交
192 193

```
L
LDOUBLEV 已提交
194
python3 tools/infer/predict_det.py --det_algorithm="EAST" --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_east/"
D
dyning 已提交
195
```
196
可视化文本检测结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下:
D
dyning 已提交
197

M
MissPenguin 已提交
198
![](../imgs_results/det_res_img_10_east.jpg)
D
dyning 已提交
199

200 201 202 203 204 205
**注意**:本代码库中,EAST后处理Locality-Aware NMS有python和c++两种版本,c++版速度明显快于python版。由于c++版本nms编译版本问题,只有python3.5环境下会调用c++版nms,其他情况将调用python版nms。


<a name="SAST文本检测模型推理"></a>
### 4. SAST文本检测模型推理
#### (1). 四边形文本检测模型(ICDAR2015)  
M
MissPenguin 已提交
206
首先将SAST文本检测训练过程中保存的模型,转换成inference model。以基于Resnet50_vd骨干网络,在ICDAR2015英文数据集训练的模型为例([模型下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar)),可以使用如下命令进行转换:
207
```
W
WenmuZhou 已提交
208
python3 tools/export_model.py -c configs/det/det_r50_vd_sast_icdar15.yml -o Global.pretrained_model=./det_r50_vd_sast_icdar15_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_sast_ic15
W
WenmuZhou 已提交
209

210
```
L
licx 已提交
211
**SAST文本检测模型推理,需要设置参数`--det_algorithm="SAST"`**,可以执行如下命令:
212 213 214 215 216
```
python3 tools/infer/predict_det.py --det_algorithm="SAST" --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_sast_ic15/"
```
可视化文本检测结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下:

M
MissPenguin 已提交
217
![](../imgs_results/det_res_img_10_sast.jpg)
218 219

#### (2). 弯曲文本检测模型(Total-Text)  
M
MissPenguin 已提交
220
首先将SAST文本检测训练过程中保存的模型,转换成inference model。以基于Resnet50_vd骨干网络,在Total-Text英文数据集训练的模型为例([模型下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_totaltext_v2.0_train.tar)),可以使用如下命令进行转换:
L
LDOUBLEV 已提交
221

222
```
W
WenmuZhou 已提交
223
python3 tools/export_model.py -c configs/det/det_r50_vd_sast_totaltext.yml -o Global.pretrained_model=./det_r50_vd_sast_totaltext_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_sast_tt
W
WenmuZhou 已提交
224

225 226
```

L
licx 已提交
227
**SAST文本检测模型推理,需要设置参数`--det_algorithm="SAST"`,同时,还需要增加参数`--det_sast_polygon=True`,**可以执行如下命令:
228 229 230 231
```
python3 tools/infer/predict_det.py --det_algorithm="SAST" --image_dir="./doc/imgs_en/img623.jpg" --det_model_dir="./inference/det_sast_tt/" --det_sast_polygon=True
```
可视化文本检测结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下:
L
LDOUBLEV 已提交
232

M
MissPenguin 已提交
233
![](../imgs_results/det_res_img623_sast.jpg)
234 235 236 237 238

**注意**:本代码库中,SAST后处理Locality-Aware NMS有python和c++两种版本,c++版速度明显快于python版。由于c++版本nms编译版本问题,只有python3.5环境下会调用c++版nms,其他情况将调用python版nms。


<a name="文本识别模型推理"></a>
D
dyning 已提交
239
## 三、文本识别模型推理
L
LDOUBLEV 已提交
240

D
dyning 已提交
241
下面将介绍超轻量中文识别模型推理、基于CTC损失的识别模型推理和基于Attention损失的识别模型推理。对于中文文本识别,建议优先选择基于CTC损失的识别模型,实践中也发现基于Attention损失的效果不如基于CTC损失的识别模型。此外,如果训练时修改了文本的字典,请参考下面的自定义文本识别字典的推理。
D
dyning 已提交
242 243


244 245
<a name="超轻量中文识别模型推理"></a>
### 1. 超轻量中文识别模型推理
D
dyning 已提交
246 247 248 249

超轻量中文识别模型推理,可以执行如下命令:

```
W
WenmuZhou 已提交
250 251 252 253
# 下载超轻量中文识别模型:
wget  https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar
tar xf ch_ppocr_mobile_v2.0_rec_infer.tar
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/ch/word_4.jpg" --rec_model_dir="ch_ppocr_mobile_v2.0_rec_infer"
D
dyning 已提交
254 255
```

256
![](../imgs_words/ch/word_4.jpg)
D
dyning 已提交
257 258 259

执行命令后,上面图像的预测结果(识别的文本和得分)会打印到屏幕上,示例如下:

W
WenmuZhou 已提交
260 261 262
```bash
Predicts of ./doc/imgs_words/ch/word_4.jpg:('实力活力', 0.98458153)
```
D
dyning 已提交
263

264 265
<a name="基于CTC损失的识别模型推理"></a>
### 2. 基于CTC损失的识别模型推理
D
dyning 已提交
266

W
WenmuZhou 已提交
267
我们以 CRNN 为例,介绍基于CTC损失的识别模型推理。 Rosetta 使用方式类似,不用设置识别算法参数rec_algorithm。
D
dyning 已提交
268

W
WenmuZhou 已提交
269
首先将 CRNN 文本识别训练过程中保存的模型,转换成inference model。以基于Resnet34_vd骨干网络,使用MJSynth和SynthText两个英文文本识别合成数据集训练
W
WenmuZhou 已提交
270
的模型为例( [模型下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_bilstm_ctc_v2.0_train.tar) ),可以使用如下命令进行转换:
D
dyning 已提交
271 272

```
W
WenmuZhou 已提交
273
python3 tools/export_model.py -c configs/rec/rec_r34_vd_none_bilstm_ctc.yml -o Global.pretrained_model=./rec_r34_vd_none_bilstm_ctc_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/rec_crnn
D
dyning 已提交
274 275
```

W
WenmuZhou 已提交
276
CRNN 文本识别模型推理,可以执行如下命令:
L
LDOUBLEV 已提交
277 278

```
W
WenmuZhou 已提交
279
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./inference/rec_crnn/" --rec_image_shape="3, 32, 100" --rec_char_type="en"
L
LDOUBLEV 已提交
280
```
T
tink2123 已提交
281

282
![](../imgs_words_en/word_336.png)
D
dyning 已提交
283 284 285

执行命令后,上面图像的识别结果如下:

W
WenmuZhou 已提交
286 287 288
```bash
Predicts of ./doc/imgs_words_en/word_336.png:('super', 0.9999073)
```
D
dyning 已提交
289 290

**注意**:由于上述模型是参考[DTRB](https://arxiv.org/abs/1904.01906)文本识别训练和评估流程,与超轻量级中文识别模型训练有两方面不同:
L
LDOUBLEV 已提交
291

D
dyning 已提交
292
- 训练时采用的图像分辨率不同,训练上述模型采用的图像分辨率是[3,32,100],而中文模型训练时,为了保证长文本的识别效果,训练时采用的图像分辨率是[3, 32, 320]。预测推理程序默认的的形状参数是训练中文采用的图像分辨率,即[3, 32, 320]。因此,这里推理上述英文模型时,需要通过参数rec_image_shape设置识别图像的形状。
L
LDOUBLEV 已提交
293

D
dyning 已提交
294
- 字符列表,DTRB论文中实验只是针对26个小写英文本母和10个数字进行实验,总共36个字符。所有大小字符都转成了小写字符,不在上面列表的字符都忽略,认为是空格。因此这里没有输入字符字典,而是通过如下命令生成字典.因此在推理时需要设置参数rec_char_type,指定为英文"en"。
L
LDOUBLEV 已提交
295 296

```
D
dyning 已提交
297 298
self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
dict_character = list(self.character_str)
L
LDOUBLEV 已提交
299
```
T
tink2123 已提交
300 301 302 303
<a name="基于SRN损失的识别模型推理"></a>
### 3. 基于SRN损失的识别模型推理
基于SRN损失的识别模型,需要额外设置识别算法参数 --rec_algorithm="SRN"。
同时需要保证预测shape与训练时一致,如: --rec_image_shape="1, 64, 256"
W
WenmuZhou 已提交
304

T
tink2123 已提交
305 306 307 308 309 310 311 312 313
```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" \
                                   --rec_model_dir="./inference/srn/" \
                                   --rec_image_shape="1, 64, 256" \
                                   --rec_char_type="en" \
                                   --rec_algorithm="SRN"
```

### 4. 自定义文本识别字典的推理
W
WenmuZhou 已提交
314
如果训练时修改了文本的字典,在使用inference模型预测时,需要通过`--rec_char_dict_path`指定使用的字典路径,并且设置 `rec_char_type=ch`
L
LDOUBLEV 已提交
315 316

```
W
WenmuZhou 已提交
317
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_type="ch" --rec_char_dict_path="your text dict path"
L
LDOUBLEV 已提交
318 319
```

W
WenmuZhou 已提交
320
<a name="多语言模型的推理"></a>
T
tink2123 已提交
321
### 5. 多语言模型的推理
W
WenmuZhou 已提交
322
如果您需要预测的是其他语言模型,在使用inference模型预测时,需要通过`--rec_char_dict_path`指定使用的字典路径, 同时为了得到正确的可视化结果,
T
tink2123 已提交
323
需要通过 `--vis_font_path` 指定可视化的字体路径,`doc/fonts/` 路径下有默认提供的小语种字体,例如韩文识别:
W
WenmuZhou 已提交
324 325

```
T
tink2123 已提交
326
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/korean/1.jpg" --rec_model_dir="./your inference model" --rec_char_type="korean" --rec_char_dict_path="ppocr/utils/dict/korean_dict.txt" --vis_font_path="doc/fonts/korean.ttf"
W
WenmuZhou 已提交
327 328 329 330 331
```
![](../imgs_words/korean/1.jpg)

执行命令后,上图的预测结果为:
``` text
W
WenmuZhou 已提交
332
Predicts of ./doc/imgs_words/korean/1.jpg:('바탕으로', 0.9948904)
W
WenmuZhou 已提交
333 334 335 336 337 338 339 340 341 342 343 344 345
```

<a name="方向分类模型推理"></a>
## 四、方向分类模型推理

下面将介绍方向分类模型推理。

<a name="方向分类模型推理"></a>
### 1. 方向分类模型推理

方向分类模型推理,可以执行如下命令:

```
W
WenmuZhou 已提交
346 347 348 349
# 下载超轻量中文方向分类器模型:
wget  https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar
tar xf ch_ppocr_mobile_v2.0_cls_infer.tar
python3 tools/infer/predict_cls.py --image_dir="./doc/imgs_words/ch/word_4.jpg" --cls_model_dir="ch_ppocr_mobile_v2.0_cls_infer"
W
WenmuZhou 已提交
350 351
```

W
WenmuZhou 已提交
352
![](../imgs_words/ch/word_1.jpg)
W
WenmuZhou 已提交
353 354 355

执行命令后,上面图像的预测结果(分类的方向和得分)会打印到屏幕上,示例如下:

W
WenmuZhou 已提交
356
```
W
WenmuZhou 已提交
357
Predicts of ./doc/imgs_words/ch/word_4.jpg:['0', 0.9999982]
W
WenmuZhou 已提交
358
```
W
WenmuZhou 已提交
359 360 361

<a name="文本检测、方向分类和文字识别串联推理"></a>
## 五、文本检测、方向分类和文字识别串联推理
362 363
<a name="超轻量中文OCR模型推理"></a>
### 1. 超轻量中文OCR模型推理
D
dyning 已提交
364

W
WenmuZhou 已提交
365
在执行预测时,需要通过参数`image_dir`指定单张图像或者图像集合的路径、参数`det_model_dir`,`cls_model_dir``rec_model_dir`分别指定检测,方向分类和识别的inference模型路径。参数`use_angle_cls`用于控制是否启用方向分类模型。可视化识别结果默认保存到 ./inference_results 文件夹里面。
D
dyning 已提交
366

L
LDOUBLEV 已提交
367
```
W
WenmuZhou 已提交
368
# 使用方向分类器
W
WenmuZhou 已提交
369
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./inference/det_db/" --cls_model_dir="./inference/cls/" --rec_model_dir="./inference/rec_crnn/" --use_angle_cls=true
W
WenmuZhou 已提交
370 371

# 不使用方向分类器
W
WenmuZhou 已提交
372
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./inference/det_db/" --rec_model_dir="./inference/rec_crnn/" --use_angle_cls=false
L
LDOUBLEV 已提交
373 374
```

W
WenmuZhou 已提交
375 376 377 378




D
dyning 已提交
379 380
执行命令后,识别结果图像如下:

W
WenmuZhou 已提交
381
![](../imgs_results/system_res_00018069.jpg)
D
dyning 已提交
382

383 384
<a name="其他模型推理"></a>
### 2. 其他模型推理
D
dyning 已提交
385

386 387
如果想尝试使用其他检测算法或者识别算法,请参考上述文本检测模型推理和文本识别模型推理,更新相应配置和模型。

L
licx 已提交
388
**注意:由于检测框矫正逻辑的局限性,暂不支持使用SAST弯曲文本检测模型(即,使用参数`--det_sast_polygon=True`时)进行模型串联。**
389 390

下面给出基于EAST文本检测和STAR-Net文本识别执行命令:
L
LDOUBLEV 已提交
391 392

```
D
dyning 已提交
393
python3 tools/infer/predict_system.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_east/" --det_algorithm="EAST" --rec_model_dir="./inference/starnet/" --rec_image_shape="3, 32, 100" --rec_char_type="en"
L
LDOUBLEV 已提交
394
```
D
dyning 已提交
395 396 397

执行命令后,识别结果图像如下:

W
WenmuZhou 已提交
398
![](../imgs_results/img_10_east_starnet.jpg)