rec_mv3_none_bilstm_ctc_lmdb.yml 2.3 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
Global:
  use_gpu: true
  epoch_num: 500
  log_smooth_window: 20
  print_batch_step: 1
  save_model_dir: ./output/rec/test/
  save_epoch_step: 500
  # evaluation is run every 5000 iterations after the 4000th iteration
  eval_batch_step: 1016
  # if pretrained_model is saved in static mode, load_static_weights must set to True
  load_static_weights: True
  cal_metric_during_train: True
  pretrained_model:
  checkpoints: #output/rec/rec_crnn/best_accuracy
  save_inference_dir:
  use_visualdl: True
  infer_img: doc/imgs_words/ch/word_1.jpg
  # for data or label process
  max_text_length: 80
  character_dict_path: /home/zhoujun20/rec/lmdb/dict.txt
  character_type: 'ch'
  use_space_char: True
  infer_mode: False
  use_tps: False


Optimizer:
  name: Adam
  beta1: 0.9
  beta2: 0.999
  learning_rate:
    name: Cosine
    lr: 0.0005
    warmup_epoch: 1
  regularizer:
    name: 'L2'
    factor: 0.00001

Architecture:
  type: rec
  algorithm: CRNN
  Transform:
  Backbone:
    name: MobileNetV3
    scale: 0.5
    model_name: small
    small_stride: [ 1, 2, 2, 2 ]
  Neck:
    name: SequenceEncoder
    encoder_type: rnn
    hidden_size: 48
  Head:
    name: CTC
    fc_decay: 0.00001

Loss:
  name: CTCLoss

PostProcess:
  name: CTCLabelDecode

Metric:
  name: RecMetric
  main_indicator: acc

TRAIN:
  dataset:
    name: LMDBDateSet
    file_list:
      - /home/zhoujun20/rec/lmdb/train # dataset1
    ratio_list: [ 0.4,0.6 ]
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - CTCLabelEncode: # Class handling label
      - RecAug:
      - RecResizeImg:
          image_shape: [ 3,32,320 ]
      - keepKeys:
          keep_keys: [ 'image','label','length' ] # dataloader将按照此顺序返回list
  loader:
    batch_size: 256
    shuffle: True
    drop_last: True
    num_workers: 6

EVAL:
  dataset:
    name: LMDBDateSet
    file_list:
      - /home/zhoujun20/rec/lmdb/val
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - CTCLabelEncode: # Class handling label
      - RecResizeImg:
          image_shape: [ 3,32,320 ]
      - keepKeys:
          keep_keys: [ 'image','label','length' ] # dataloader将按照此顺序返回list
  loader:
    shuffle: False
    drop_last: False
    batch_size: 256
    num_workers: 6