det_r50_vd_db.yml 3.2 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5
Global:
  use_gpu: true
  epoch_num: 1200
  log_smooth_window: 20
  print_batch_step: 2
W
WenmuZhou 已提交
6 7 8 9 10 11 12 13 14
  save_model_dir: ./output/20201010/
  save_epoch_step: 1200
  # evaluation is run every 5000 iterations after the 4000th iteration
  eval_batch_step: 8
  # if pretrained_model is saved in static mode, load_static_weights must set to True
  load_static_weights: True
  cal_metric_during_train: False
  pretrained_model: /home/zhoujun20/pretrain_models/MobileNetV3_large_x0_5_pretrained
  checkpoints: #./output/det_db_0.001_DiceLoss_256_pp_config_2.0b_4gpu/best_accuracy
15
  save_inference_dir:
W
WenmuZhou 已提交
16 17 18
  use_visualdl: True
  infer_img: doc/imgs_en/img_10.jpg
  save_res_path: ./output/det_db/predicts_db.txt
19

W
WenmuZhou 已提交
20 21 22 23 24 25 26 27 28 29 30
Optimizer:
  name: Adam
  beta1: 0.9
  beta2: 0.999
  learning_rate:
#    name: Cosine
    lr: 0.001
#    warmup_epoch: 0
  regularizer:
    name: 'L2'
    factor: 0
L
LDOUBLEV 已提交
31

W
WenmuZhou 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44
Architecture:
  type: det
  algorithm: DB
  Transform:
  Backbone:
    name: ResNet
    layers: 50
  Neck:
    name: FPN
    out_channels: 256
  Head:
    name: DBHead
    k: 50
L
LDOUBLEV 已提交
45 46

Loss:
W
WenmuZhou 已提交
47
  name: DBLoss
L
LDOUBLEV 已提交
48 49 50 51 52 53 54
  balance_loss: true
  main_loss_type: DiceLoss
  alpha: 5
  beta: 10
  ohem_ratio: 3

PostProcess:
W
WenmuZhou 已提交
55
  name: DBPostProcess
L
LDOUBLEV 已提交
56
  thresh: 0.3
W
WenmuZhou 已提交
57
  box_thresh: 0.6
L
LDOUBLEV 已提交
58 59
  max_candidates: 1000
  unclip_ratio: 1.5
W
WenmuZhou 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

Metric:
  name: DetMetric
  main_indicator: hmean

TRAIN:
  dataset:
    name: SimpleDataSet
    data_dir: /home/zhoujun20/detection/
    file_list:
      - /home/zhoujun20/detection/train_icdar2015_label.txt # dataset1
    ratio_list: [1.0]
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - DetLabelEncode: # Class handling label
      - IaaAugment:
          augmenter_args:
            - { 'type': Fliplr, 'args': { 'p': 0.5 } }
            - { 'type': Affine, 'args': { 'rotate': [ -10,10 ] } }
            - { 'type': Resize,'args': { 'size': [ 0.5,3 ] } }
      - EastRandomCropData:
          size: [ 640,640 ]
          max_tries: 50
          keep_ratio: true
      - MakeBorderMap:
          shrink_ratio: 0.4
          thresh_min: 0.3
          thresh_max: 0.7
      - MakeShrinkMap:
          shrink_ratio: 0.4
          min_text_size: 8
      - NormalizeImage:
          scale: 1./255.
          mean: [ 0.485, 0.456, 0.406 ]
          std: [ 0.229, 0.224, 0.225 ]
          order: 'hwc'
      - ToCHWImage:
      - keepKeys:
          keep_keys: ['image','threshold_map','threshold_mask','shrink_map','shrink_mask'] # dataloader将按照此顺序返回list
  loader:
    shuffle: True
    drop_last: False
    batch_size: 16
    num_workers: 6

EVAL:
  dataset:
    name: SimpleDataSet
    data_dir: /home/zhoujun20/detection/
    file_list:
      - /home/zhoujun20/detection/test_icdar2015_label.txt
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - DetLabelEncode: # Class handling label
      - DetResizeForTest:
          image_shape: [736,1280]
      - NormalizeImage:
          scale: 1./255.
          mean: [ 0.485, 0.456, 0.406 ]
          std: [ 0.229, 0.224, 0.225 ]
          order: 'hwc'
      - ToCHWImage:
      - keepKeys:
          keep_keys: ['image','shape','polys','ignore_tags']
  loader:
    shuffle: False
    drop_last: False
    batch_size: 1 # must be 1
    num_workers: 6