predict_table.py 8.9 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
import subprocess

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))

os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
import cv2
import copy
import numpy as np
import time
import tools.infer.predict_rec as predict_rec
import tools.infer.predict_det as predict_det
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
from ppocr.utils.logging import get_logger
W
WenmuZhou 已提交
33 34 35
from ppstructure.table.matcher import distance, compute_iou
from ppstructure.utility import parse_args
import ppstructure.table.predict_structure as predict_strture
W
WenmuZhou 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

logger = get_logger()


def expand(pix, det_box, shape):
    x0, y0, x1, y1 = det_box
    #     print(shape)
    h, w, c = shape
    tmp_x0 = x0 - pix
    tmp_x1 = x1 + pix
    tmp_y0 = y0 - pix
    tmp_y1 = y1 + pix
    x0_ = tmp_x0 if tmp_x0 >= 0 else 0
    x1_ = tmp_x1 if tmp_x1 <= w else w
    y0_ = tmp_y0 if tmp_y0 >= 0 else 0
    y1_ = tmp_y1 if tmp_y1 <= h else h
    return x0_, y0_, x1_, y1_


class TableSystem(object):
    def __init__(self, args, text_detector=None, text_recognizer=None):
57 58 59 60
        self.text_detector = predict_det.TextDetector(
            args) if text_detector is None else text_detector
        self.text_recognizer = predict_rec.TextRecognizer(
            args) if text_recognizer is None else text_recognizer
W
WenmuZhou 已提交
61 62
        self.table_structurer = predict_strture.TableStructurer(args)

63 64
    def __call__(self, img, return_ocr_result_in_table=False):
        result = dict()
W
WenmuZhou 已提交
65 66 67 68
        ori_im = img.copy()
        structure_res, elapse = self.table_structurer(copy.deepcopy(img))
        dt_boxes, elapse = self.text_detector(copy.deepcopy(img))
        dt_boxes = sorted_boxes(dt_boxes)
69 70
        if return_ocr_result_in_table:
            result['boxes'] = [x.tolist() for x in dt_boxes]
W
WenmuZhou 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
        r_boxes = []
        for box in dt_boxes:
            x_min = box[:, 0].min() - 1
            x_max = box[:, 0].max() + 1
            y_min = box[:, 1].min() - 1
            y_max = box[:, 1].max() + 1
            box = [x_min, y_min, x_max, y_max]
            r_boxes.append(box)
        dt_boxes = np.array(r_boxes)

        logger.debug("dt_boxes num : {}, elapse : {}".format(
            len(dt_boxes), elapse))
        if dt_boxes is None:
            return None, None
        img_crop_list = []

        for i in range(len(dt_boxes)):
            det_box = dt_boxes[i]
            x0, y0, x1, y1 = expand(2, det_box, ori_im.shape)
            text_rect = ori_im[int(y0):int(y1), int(x0):int(x1), :]
            img_crop_list.append(text_rect)
        rec_res, elapse = self.text_recognizer(img_crop_list)
        logger.debug("rec_res num  : {}, elapse : {}".format(
            len(rec_res), elapse))
95 96
        if return_ocr_result_in_table:
            result['rec_res'] = rec_res
W
WenmuZhou 已提交
97
        pred_html, pred = self.rebuild_table(structure_res, dt_boxes, rec_res)
98 99
        result['html'] = pred_html
        return result
W
WenmuZhou 已提交
100 101 102 103

    def rebuild_table(self, structure_res, dt_boxes, rec_res):
        pred_structures, pred_bboxes = structure_res
        matched_index = self.match_result(dt_boxes, pred_bboxes)
104 105
        pred_html, pred = self.get_pred_html(pred_structures, matched_index,
                                             rec_res)
W
WenmuZhou 已提交
106 107 108 109 110 111 112 113
        return pred_html, pred

    def match_result(self, dt_boxes, pred_bboxes):
        matched = {}
        for i, gt_box in enumerate(dt_boxes):
            # gt_box = [np.min(gt_box[:, 0]), np.min(gt_box[:, 1]), np.max(gt_box[:, 0]), np.max(gt_box[:, 1])]
            distances = []
            for j, pred_box in enumerate(pred_bboxes):
114 115 116
                distances.append((distance(gt_box, pred_box),
                                  1. - compute_iou(gt_box, pred_box)
                                  ))  # 获取两两cell之间的L1距离和 1- IOU
W
WenmuZhou 已提交
117 118
            sorted_distances = distances.copy()
            # 根据距离和IOU挑选最"近"的cell
119 120
            sorted_distances = sorted(
                sorted_distances, key=lambda item: (item[1], item[0]))
W
WenmuZhou 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133
            if distances.index(sorted_distances[0]) not in matched.keys():
                matched[distances.index(sorted_distances[0])] = [i]
            else:
                matched[distances.index(sorted_distances[0])].append(i)
        return matched

    def get_pred_html(self, pred_structures, matched_index, ocr_contents):
        end_html = []
        td_index = 0
        for tag in pred_structures:
            if '</td>' in tag:
                if td_index in matched_index.keys():
                    b_with = False
134 135
                    if '<b>' in ocr_contents[matched_index[td_index][
                            0]] and len(matched_index[td_index]) > 1:
W
WenmuZhou 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
                        b_with = True
                        end_html.extend('<b>')
                    for i, td_index_index in enumerate(matched_index[td_index]):
                        content = ocr_contents[td_index_index][0]
                        if len(matched_index[td_index]) > 1:
                            if len(content) == 0:
                                continue
                            if content[0] == ' ':
                                content = content[1:]
                            if '<b>' in content:
                                content = content[3:]
                            if '</b>' in content:
                                content = content[:-4]
                            if len(content) == 0:
                                continue
151 152
                            if i != len(matched_index[
                                    td_index]) - 1 and ' ' != content[-1]:
W
WenmuZhou 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
                                content += ' '
                        end_html.extend(content)
                    if b_with:
                        end_html.extend('</b>')

                end_html.append(tag)
                td_index += 1
            else:
                end_html.append(tag)
        return ''.join(end_html), end_html


def sorted_boxes(dt_boxes):
    """
    Sort text boxes in order from top to bottom, left to right
    args:
        dt_boxes(array):detected text boxes with shape [4, 2]
    return:
        sorted boxes(array) with shape [4, 2]
    """
    num_boxes = dt_boxes.shape[0]
    sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
    _boxes = list(sorted_boxes)

    for i in range(num_boxes - 1):
        if abs(_boxes[i + 1][0][1] - _boxes[i][0][1]) < 10 and \
                (_boxes[i + 1][0][0] < _boxes[i][0][0]):
            tmp = _boxes[i]
            _boxes[i] = _boxes[i + 1]
            _boxes[i + 1] = tmp
    return _boxes


def to_excel(html_table, excel_path):
    from tablepyxl import tablepyxl
    tablepyxl.document_to_xl(html_table, excel_path)


def main(args):
    image_file_list = get_image_file_list(args.image_dir)
    image_file_list = image_file_list[args.process_id::args.total_process_num]
    os.makedirs(args.output, exist_ok=True)

    text_sys = TableSystem(args)
    img_num = len(image_file_list)
    for i, image_file in enumerate(image_file_list):
        logger.info("[{}/{}] {}".format(i, img_num, image_file))
        img, flag = check_and_read_gif(image_file)
201 202
        excel_path = os.path.join(
            args.output, os.path.basename(image_file).split('.')[0] + '.xlsx')
W
WenmuZhou 已提交
203 204 205 206 207 208
        if not flag:
            img = cv2.imread(image_file)
        if img is None:
            logger.error("error in loading image:{}".format(image_file))
            continue
        starttime = time.time()
209 210 211
        pred_res = text_sys(img)
        pred_html = pred_res['html']
        logger.info(pred_html)
W
WenmuZhou 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
        to_excel(pred_html, excel_path)
        logger.info('excel saved to {}'.format(excel_path))
        elapse = time.time() - starttime
        logger.info("Predict time : {:.3f}s".format(elapse))


if __name__ == "__main__":
    args = parse_args()
    if args.use_mp:
        p_list = []
        total_process_num = args.total_process_num
        for process_id in range(total_process_num):
            cmd = [sys.executable, "-u"] + sys.argv + [
                "--process_id={}".format(process_id),
                "--use_mp={}".format(False)
            ]
            p = subprocess.Popen(cmd, stdout=sys.stdout, stderr=sys.stdout)
            p_list.append(p)
        for p in p_list:
            p.wait()
    else:
        main(args)