det_r50_vd_pse.yml 3.3 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
Global:
  use_gpu: true
  epoch_num: 600
  log_smooth_window: 20
  print_batch_step: 10
  save_model_dir: ./output/det_r50_vd_pse/
  save_epoch_step: 1200
  # evaluation is run every 2000 iterations
  eval_batch_step: [0,125]
  cal_metric_during_train: False
  pretrained_model: /ssd1/zhoujun20/fuxian/ResNet50_vd_ssld_pretrained
  checkpoints: #./output/det_r50_vd_pse_batch8_ColorJitter/best_accuracy
  save_inference_dir:
  use_visualdl: False
  infer_img: doc/imgs_en/img_10.jpg
  save_res_path: ./output/det_db/predicts_db.txt

Architecture:
  model_type: det
  algorithm: PSE
  Transform:
  Backbone:
    name: ResNet
    layers: 50
  Neck:
    name: FPN
    out_channels: 256
  Head:
    name: PSEHead
    hidden_dim: 256
    out_channels: 7

Loss:
  name: PSELoss
  alpha: 0.7
  ohem_ratio: 3
  kernel_sample_mask: pred
  reduction: none

Optimizer:
  name: Adam
  beta1: 0.9
  beta2: 0.999
  lr:
    name: Step
    learning_rate: 0.0001
    step_size: 200
    gamma: 0.1
  regularizer:
    name: 'L2'
    factor: 0.0005

PostProcess:
  name: PSEPostProcess
  thresh: 0
  box_thresh: 0.85
  min_area: 16
  box_type: box # 'box' or 'poly'
  scale: 1

Metric:
  name: DetMetric
  main_indicator: hmean

Train:
  dataset:
    name: SimpleDataSet
    data_dir: ./train_data/icdar2015/text_localization/
    label_file_list:
      - ./train_data/icdar2015/text_localization/train_icdar2015_label.txt
    ratio_list: [1.0]
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - DetLabelEncode: # Class handling label
      - ColorJitter:
          brightness: 0.12549019607843137
          saturation: 0.5
      - IaaAugment:
          augmenter_args:
            - { 'type': Resize, 'args': { 'size': [ 0.5, 3 ] } }
            - { 'type': Fliplr, 'args': { 'p': 0.5 } }
            - { 'type': Affine, 'args': { 'rotate': [-10, 10] } }
      - MakePseGt:
          kernel_num: 7
          min_shrink_ratio: 0.4
          size: 640
      - RandomCropImgMask:
          size: [640,640]
          main_key: gt_text
          crop_keys: ['image', 'gt_text', 'gt_kernels', 'mask']
      - NormalizeImage:
          scale: 1./255.
          mean: [0.485, 0.456, 0.406]
          std: [0.229, 0.224, 0.225]
          order: 'hwc'
      - ToCHWImage:
      - KeepKeys:
          keep_keys: ['image', 'gt_text', 'gt_kernels', 'mask'] # the order of the dataloader list
  loader:
    shuffle: True
    drop_last: False
    batch_size_per_card: 8
    num_workers: 8

Eval:
  dataset:
    name: SimpleDataSet
    data_dir: ./train_data/icdar2015/text_localization/
    label_file_list:
      - ./train_data/icdar2015/text_localization/test_icdar2015_label.txt
    ratio_list: [ 1.0 ]
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - DetLabelEncode: # Class handling label
      - DetResizeForTest:
          limit_side_len: 736
          limit_type: min
          # resize_long: 2240
      - NormalizeImage:
          scale: 1./255.
          mean: [0.485, 0.456, 0.406]
          std: [0.229, 0.224, 0.225]
          order: 'hwc'
      - ToCHWImage:
      - KeepKeys:
          keep_keys: ['image', 'shape', 'polys', 'ignore_tags']
  loader:
    shuffle: False
    drop_last: False
    batch_size_per_card: 1 # must be 1
    num_workers: 8