pg_postprocess.py 6.0 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
J
Jethong 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys

__dir__ = os.path.dirname(__file__)
sys.path.append(__dir__)
sys.path.append(os.path.join(__dir__, '..'))

J
Jethong 已提交
26 27
from ppocr.utils.e2e_utils.extract_textpoint import *
from ppocr.utils.e2e_utils.visual import *
J
Jethong 已提交
28 29 30 31 32
import paddle


class PGPostProcess(object):
    """
J
Jethong 已提交
33
    The post process for PGNet.
J
Jethong 已提交
34 35
    """

J
Jethong 已提交
36 37 38
    def __init__(self, character_dict_path, valid_set, score_thresh, **kwargs):
        self.Lexicon_Table = get_dict(character_dict_path)
        self.valid_set = valid_set
J
Jethong 已提交
39 40
        self.score_thresh = score_thresh

J
Jethong 已提交
41 42 43 44 45
        # c++ la-nms is faster, but only support python 3.5
        self.is_python35 = False
        if sys.version_info.major == 3 and sys.version_info.minor == 5:
            self.is_python35 = True

J
Jethong 已提交
46
    def __call__(self, outs_dict, shape_list):
J
Jethong 已提交
47 48 49 50 51 52 53 54 55
        p_score = outs_dict['f_score']
        p_border = outs_dict['f_border']
        p_char = outs_dict['f_char']
        p_direction = outs_dict['f_direction']
        if isinstance(p_score, paddle.Tensor):
            p_score = p_score[0].numpy()
            p_border = p_border[0].numpy()
            p_direction = p_direction[0].numpy()
            p_char = p_char[0].numpy()
J
Jethong 已提交
56
        else:
J
Jethong 已提交
57 58 59 60 61
            p_score = p_score[0]
            p_border = p_border[0]
            p_direction = p_direction[0]
            p_char = p_char[0]
        src_h, src_w, ratio_h, ratio_w = shape_list[0]
J
Jethong 已提交
62 63
        is_curved = self.valid_set == "totaltext"
        instance_yxs_list = generate_pivot_list(
J
Jethong 已提交
64 65 66
            p_score,
            p_char,
            p_direction,
J
Jethong 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
            score_thresh=self.score_thresh,
            is_backbone=True,
            is_curved=is_curved)
        p_char = paddle.to_tensor(np.expand_dims(p_char, axis=0))
        char_seq_idx_set = []
        for i in range(len(instance_yxs_list)):
            gather_info_lod = paddle.to_tensor(instance_yxs_list[i])
            f_char_map = paddle.transpose(p_char, [0, 2, 3, 1])
            feature_seq = paddle.gather_nd(f_char_map, gather_info_lod)
            feature_seq = np.expand_dims(feature_seq.numpy(), axis=0)
            feature_len = [len(feature_seq[0])]
            featyre_seq = paddle.to_tensor(feature_seq)
            feature_len = np.array([feature_len]).astype(np.int64)
            length = paddle.to_tensor(feature_len)
            seq_pred = paddle.fluid.layers.ctc_greedy_decoder(
                input=featyre_seq, blank=36, input_length=length)
            seq_pred_str = seq_pred[0].numpy().tolist()[0]
            seq_len = seq_pred[1].numpy()[0][0]
            temp_t = []
            for c in seq_pred_str[:seq_len]:
                temp_t.append(c)
            char_seq_idx_set.append(temp_t)
        seq_strs = []
        for char_idx_set in char_seq_idx_set:
            pr_str = ''.join([self.Lexicon_Table[pos] for pos in char_idx_set])
            seq_strs.append(pr_str)
        poly_list = []
        keep_str_list = []
        all_point_list = []
        all_point_pair_list = []
        for yx_center_line, keep_str in zip(instance_yxs_list, seq_strs):
            if len(yx_center_line) == 1:
                yx_center_line.append(yx_center_line[-1])

            offset_expand = 1.0
            if self.valid_set == 'totaltext':
                offset_expand = 1.2

            point_pair_list = []
            for batch_id, y, x in yx_center_line:
                offset = p_border[:, y, x].reshape(2, 2)
                if offset_expand != 1.0:
                    offset_length = np.linalg.norm(
                        offset, axis=1, keepdims=True)
                    expand_length = np.clip(
                        offset_length * (offset_expand - 1),
                        a_min=0.5,
                        a_max=3.0)
                    offset_detal = offset / offset_length * expand_length
                    offset = offset + offset_detal
                ori_yx = np.array([y, x], dtype=np.float32)
                point_pair = (ori_yx + offset)[:, ::-1] * 4.0 / np.array(
                    [ratio_w, ratio_h]).reshape(-1, 2)
                point_pair_list.append(point_pair)

                all_point_list.append([
                    int(round(x * 4.0 / ratio_w)),
                    int(round(y * 4.0 / ratio_h))
                ])
                all_point_pair_list.append(point_pair.round().astype(np.int32)
                                           .tolist())

            detected_poly, pair_length_info = point_pair2poly(point_pair_list)
            detected_poly = expand_poly_along_width(
                detected_poly, shrink_ratio_of_width=0.2)
            detected_poly[:, 0] = np.clip(
                detected_poly[:, 0], a_min=0, a_max=src_w)
            detected_poly[:, 1] = np.clip(
                detected_poly[:, 1], a_min=0, a_max=src_h)

            if len(keep_str) < 2:
                continue

            keep_str_list.append(keep_str)
            if self.valid_set == 'partvgg':
                middle_point = len(detected_poly) // 2
                detected_poly = detected_poly[
                    [0, middle_point - 1, middle_point, -1], :]
                poly_list.append(detected_poly)
            elif self.valid_set == 'totaltext':
                poly_list.append(detected_poly)
            else:
                print('--> Not supported format.')
                exit(-1)
J
Jethong 已提交
151 152 153 154 155
        data = {
            'points': poly_list,
            'strs': keep_str_list,
        }
        return data