label_ops.py 36.9 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

20
import copy
W
WenmuZhou 已提交
21
import numpy as np
T
tink2123 已提交
22
import string
L
add kie  
LDOUBLEV 已提交
23
from shapely.geometry import LineString, Point, Polygon
L
LDOUBLEV 已提交
24
import json
A
andyjpaddle 已提交
25
import copy
W
WenmuZhou 已提交
26

T
tink2123 已提交
27 28
from ppocr.utils.logging import get_logger

W
WenmuZhou 已提交
29 30 31 32 33 34 35 36 37 38 39 40

class ClsLabelEncode(object):
    def __init__(self, label_list, **kwargs):
        self.label_list = label_list

    def __call__(self, data):
        label = data['label']
        if label not in self.label_list:
            return None
        label = self.label_list.index(label)
        data['label'] = label
        return data
W
WenmuZhou 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60


class DetLabelEncode(object):
    def __init__(self, **kwargs):
        pass

    def __call__(self, data):
        label = data['label']
        label = json.loads(label)
        nBox = len(label)
        boxes, txts, txt_tags = [], [], []
        for bno in range(0, nBox):
            box = label[bno]['points']
            txt = label[bno]['transcription']
            boxes.append(box)
            txts.append(txt)
            if txt in ['*', '###']:
                txt_tags.append(True)
            else:
                txt_tags.append(False)
L
LDOUBLEV 已提交
61 62
        if len(boxes) == 0:
            return None
M
MissPenguin 已提交
63
        boxes = self.expand_points_num(boxes)
W
WenmuZhou 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
        boxes = np.array(boxes, dtype=np.float32)
        txt_tags = np.array(txt_tags, dtype=np.bool)

        data['polys'] = boxes
        data['texts'] = txts
        data['ignore_tags'] = txt_tags
        return data

    def order_points_clockwise(self, pts):
        rect = np.zeros((4, 2), dtype="float32")
        s = pts.sum(axis=1)
        rect[0] = pts[np.argmin(s)]
        rect[2] = pts[np.argmax(s)]
        diff = np.diff(pts, axis=1)
        rect[1] = pts[np.argmin(diff)]
        rect[3] = pts[np.argmax(diff)]
        return rect

M
MissPenguin 已提交
82 83 84 85 86 87 88 89 90 91 92
    def expand_points_num(self, boxes):
        max_points_num = 0
        for box in boxes:
            if len(box) > max_points_num:
                max_points_num = len(box)
        ex_boxes = []
        for box in boxes:
            ex_box = box + [box[-1]] * (max_points_num - len(box))
            ex_boxes.append(ex_box)
        return ex_boxes

W
WenmuZhou 已提交
93 94 95 96 97 98 99 100 101 102

class BaseRecLabelEncode(object):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False):

        self.max_text_len = max_text_length
T
tink2123 已提交
103 104
        self.beg_str = "sos"
        self.end_str = "eos"
T
tink2123 已提交
105
        self.lower = False
T
tink2123 已提交
106 107 108 109 110 111

        if character_dict_path is None:
            logger = get_logger()
            logger.warning(
                "The character_dict_path is None, model can only recognize number and lower letters"
            )
W
WenmuZhou 已提交
112 113
            self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
            dict_character = list(self.character_str)
T
tink2123 已提交
114 115
            self.lower = True
        else:
116
            self.character_str = []
W
WenmuZhou 已提交
117 118 119 120
            with open(character_dict_path, "rb") as fin:
                lines = fin.readlines()
                for line in lines:
                    line = line.decode('utf-8').strip("\n").strip("\r\n")
121
                    self.character_str.append(line)
W
WenmuZhou 已提交
122
            if use_space_char:
123
                self.character_str.append(" ")
W
WenmuZhou 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
            dict_character = list(self.character_str)
        dict_character = self.add_special_char(dict_character)
        self.dict = {}
        for i, char in enumerate(dict_character):
            self.dict[char] = i
        self.character = dict_character

    def add_special_char(self, dict_character):
        return dict_character

    def encode(self, text):
        """convert text-label into text-index.
        input:
            text: text labels of each image. [batch_size]

        output:
            text: concatenated text index for CTCLoss.
                    [sum(text_lengths)] = [text_index_0 + text_index_1 + ... + text_index_(n - 1)]
            length: length of each text. [batch_size]
        """
W
WenmuZhou 已提交
144
        if len(text) == 0 or len(text) > self.max_text_len:
W
WenmuZhou 已提交
145
            return None
T
tink2123 已提交
146
        if self.lower:
W
WenmuZhou 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159
            text = text.lower()
        text_list = []
        for char in text:
            if char not in self.dict:
                # logger = get_logger()
                # logger.warning('{} is not in dict'.format(char))
                continue
            text_list.append(self.dict[char])
        if len(text_list) == 0:
            return None
        return text_list


T
Topdu 已提交
160 161 162 163 164 165 166 167 168
class NRTRLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):

T
tink2123 已提交
169 170
        super(NRTRLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
T
tink2123 已提交
171

T
Topdu 已提交
172 173 174 175 176
    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
T
Topdu 已提交
177 178
        if len(text) >= self.max_text_len - 1:
            return None
T
Topdu 已提交
179 180 181 182 183 184
        data['length'] = np.array(len(text))
        text.insert(0, 2)
        text.append(3)
        text = text + [0] * (self.max_text_len - len(text))
        data['label'] = np.array(text)
        return data
T
tink2123 已提交
185

T
Topdu 已提交
186
    def add_special_char(self, dict_character):
T
tink2123 已提交
187
        dict_character = ['blank', '<unk>', '<s>', '</s>'] + dict_character
T
Topdu 已提交
188 189
        return dict_character

T
tink2123 已提交
190

W
WenmuZhou 已提交
191 192 193 194 195 196 197 198
class CTCLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
T
tink2123 已提交
199 200
        super(CTCLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
W
WenmuZhou 已提交
201 202 203 204 205 206 207 208 209

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
        data['length'] = np.array(len(text))
        text = text + [0] * (self.max_text_len - len(text))
        data['label'] = np.array(text)
210 211 212 213 214

        label = [0] * len(self.character)
        for x in text:
            label[x] += 1
        data['label_ace'] = np.array(label)
W
WenmuZhou 已提交
215 216 217 218 219 220 221
        return data

    def add_special_char(self, dict_character):
        dict_character = ['blank'] + dict_character
        return dict_character


J
Jethong 已提交
222
class E2ELabelEncodeTest(BaseRecLabelEncode):
J
Jethong 已提交
223 224 225 226 227
    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
T
tink2123 已提交
228 229
        super(E2ELabelEncodeTest, self).__init__(
            max_text_length, character_dict_path, use_space_char)
J
Jethong 已提交
230 231

    def __call__(self, data):
J
Jethong 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
        import json
        padnum = len(self.dict)
        label = data['label']
        label = json.loads(label)
        nBox = len(label)
        boxes, txts, txt_tags = [], [], []
        for bno in range(0, nBox):
            box = label[bno]['points']
            txt = label[bno]['transcription']
            boxes.append(box)
            txts.append(txt)
            if txt in ['*', '###']:
                txt_tags.append(True)
            else:
                txt_tags.append(False)
        boxes = np.array(boxes, dtype=np.float32)
        txt_tags = np.array(txt_tags, dtype=np.bool)
        data['polys'] = boxes
J
Jethong 已提交
250
        data['ignore_tags'] = txt_tags
J
Jethong 已提交
251
        temp_texts = []
J
Jethong 已提交
252
        for text in txts:
J
Jethong 已提交
253
            text = text.lower()
J
Jethong 已提交
254 255 256
            text = self.encode(text)
            if text is None:
                return None
J
Jethong 已提交
257 258
            text = text + [padnum] * (self.max_text_len - len(text)
                                      )  # use 36 to pad
J
Jethong 已提交
259 260 261 262 263
            temp_texts.append(text)
        data['texts'] = np.array(temp_texts)
        return data


J
Jethong 已提交
264
class E2ELabelEncodeTrain(object):
J
Jethong 已提交
265 266
    def __init__(self, **kwargs):
        pass
J
Jethong 已提交
267 268

    def __call__(self, data):
J
Jethong 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
        import json
        label = data['label']
        label = json.loads(label)
        nBox = len(label)
        boxes, txts, txt_tags = [], [], []
        for bno in range(0, nBox):
            box = label[bno]['points']
            txt = label[bno]['transcription']
            boxes.append(box)
            txts.append(txt)
            if txt in ['*', '###']:
                txt_tags.append(True)
            else:
                txt_tags.append(False)
        boxes = np.array(boxes, dtype=np.float32)
        txt_tags = np.array(txt_tags, dtype=np.bool)

        data['polys'] = boxes
        data['texts'] = txts
J
Jethong 已提交
288
        data['ignore_tags'] = txt_tags
J
Jethong 已提交
289 290 291
        return data


L
add kie  
LDOUBLEV 已提交
292 293 294 295
class KieLabelEncode(object):
    def __init__(self, character_dict_path, norm=10, directed=False, **kwargs):
        super(KieLabelEncode, self).__init__()
        self.dict = dict({'': 0})
L
fix win  
LDOUBLEV 已提交
296
        with open(character_dict_path, 'r', encoding='utf-8') as fr:
L
add kie  
LDOUBLEV 已提交
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
            idx = 1
            for line in fr:
                char = line.strip()
                self.dict[char] = idx
                idx += 1
        self.norm = norm
        self.directed = directed

    def compute_relation(self, boxes):
        """Compute relation between every two boxes."""
        x1s, y1s = boxes[:, 0:1], boxes[:, 1:2]
        x2s, y2s = boxes[:, 4:5], boxes[:, 5:6]
        ws, hs = x2s - x1s + 1, np.maximum(y2s - y1s + 1, 1)
        dxs = (x1s[:, 0][None] - x1s) / self.norm
        dys = (y1s[:, 0][None] - y1s) / self.norm
        xhhs, xwhs = hs[:, 0][None] / hs, ws[:, 0][None] / hs
        whs = ws / hs + np.zeros_like(xhhs)
        relations = np.stack([dxs, dys, whs, xhhs, xwhs], -1)
        bboxes = np.concatenate([x1s, y1s, x2s, y2s], -1).astype(np.float32)
        return relations, bboxes

    def pad_text_indices(self, text_inds):
        """Pad text index to same length."""
L
debug  
LDOUBLEV 已提交
320
        max_len = 300
L
add kie  
LDOUBLEV 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
        recoder_len = max([len(text_ind) for text_ind in text_inds])
        padded_text_inds = -np.ones((len(text_inds), max_len), np.int32)
        for idx, text_ind in enumerate(text_inds):
            padded_text_inds[idx, :len(text_ind)] = np.array(text_ind)
        return padded_text_inds, recoder_len

    def list_to_numpy(self, ann_infos):
        """Convert bboxes, relations, texts and labels to ndarray."""
        boxes, text_inds = ann_infos['points'], ann_infos['text_inds']
        boxes = np.array(boxes, np.int32)
        relations, bboxes = self.compute_relation(boxes)

        labels = ann_infos.get('labels', None)
        if labels is not None:
            labels = np.array(labels, np.int32)
            edges = ann_infos.get('edges', None)
            if edges is not None:
                labels = labels[:, None]
                edges = np.array(edges)
                edges = (edges[:, None] == edges[None, :]).astype(np.int32)
                if self.directed:
                    edges = (edges & labels == 1).astype(np.int32)
                np.fill_diagonal(edges, -1)
                labels = np.concatenate([labels, edges], -1)
        padded_text_inds, recoder_len = self.pad_text_indices(text_inds)
L
debug  
LDOUBLEV 已提交
346
        max_num = 300
L
add kie  
LDOUBLEV 已提交
347 348
        temp_bboxes = np.zeros([max_num, 4])
        h, _ = bboxes.shape
那珈落's avatar
那珈落 已提交
349
        temp_bboxes[:h, :] = bboxes
L
add kie  
LDOUBLEV 已提交
350 351 352 353

        temp_relations = np.zeros([max_num, max_num, 5])
        temp_relations[:h, :h, :] = relations

L
debug  
LDOUBLEV 已提交
354
        temp_padded_text_inds = np.zeros([max_num, max_num])
L
add kie  
LDOUBLEV 已提交
355 356
        temp_padded_text_inds[:h, :] = padded_text_inds

L
debug  
LDOUBLEV 已提交
357
        temp_labels = np.zeros([max_num, max_num])
L
add kie  
LDOUBLEV 已提交
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
        temp_labels[:h, :h + 1] = labels

        tag = np.array([h, recoder_len])
        return dict(
            image=ann_infos['image'],
            points=temp_bboxes,
            relations=temp_relations,
            texts=temp_padded_text_inds,
            labels=temp_labels,
            tag=tag)

    def convert_canonical(self, points_x, points_y):

        assert len(points_x) == 4
        assert len(points_y) == 4

        points = [Point(points_x[i], points_y[i]) for i in range(4)]

        polygon = Polygon([(p.x, p.y) for p in points])
        min_x, min_y, _, _ = polygon.bounds
        points_to_lefttop = [
            LineString([points[i], Point(min_x, min_y)]) for i in range(4)
        ]
        distances = np.array([line.length for line in points_to_lefttop])
        sort_dist_idx = np.argsort(distances)
        lefttop_idx = sort_dist_idx[0]

        if lefttop_idx == 0:
            point_orders = [0, 1, 2, 3]
        elif lefttop_idx == 1:
            point_orders = [1, 2, 3, 0]
        elif lefttop_idx == 2:
            point_orders = [2, 3, 0, 1]
        else:
            point_orders = [3, 0, 1, 2]

        sorted_points_x = [points_x[i] for i in point_orders]
        sorted_points_y = [points_y[j] for j in point_orders]

        return sorted_points_x, sorted_points_y

    def sort_vertex(self, points_x, points_y):

        assert len(points_x) == 4
        assert len(points_y) == 4

        x = np.array(points_x)
        y = np.array(points_y)
        center_x = np.sum(x) * 0.25
        center_y = np.sum(y) * 0.25

        x_arr = np.array(x - center_x)
        y_arr = np.array(y - center_y)

        angle = np.arctan2(y_arr, x_arr) * 180.0 / np.pi
        sort_idx = np.argsort(angle)

        sorted_points_x, sorted_points_y = [], []
        for i in range(4):
            sorted_points_x.append(points_x[sort_idx[i]])
            sorted_points_y.append(points_y[sort_idx[i]])

        return self.convert_canonical(sorted_points_x, sorted_points_y)

    def __call__(self, data):
        import json
        label = data['label']
        annotations = json.loads(label)
        boxes, texts, text_inds, labels, edges = [], [], [], [], []
        for ann in annotations:
            box = ann['points']
            x_list = [box[i][0] for i in range(4)]
            y_list = [box[i][1] for i in range(4)]
            sorted_x_list, sorted_y_list = self.sort_vertex(x_list, y_list)
            sorted_box = []
            for x, y in zip(sorted_x_list, sorted_y_list):
                sorted_box.append(x)
                sorted_box.append(y)
            boxes.append(sorted_box)
            text = ann['transcription']
            texts.append(ann['transcription'])
            text_ind = [self.dict[c] for c in text if c in self.dict]
            text_inds.append(text_ind)
L
fix  
LDOUBLEV 已提交
441 442 443 444 445
            if 'label' in anno.keys():
                labels.append(ann['label'])
            elif 'key_cls' in anno.keys():
                labels.append(anno['key_cls'])
            else:
文幕地方's avatar
文幕地方 已提交
446 447 448
                raise ValueError(
                    "Cannot found 'key_cls' in ann.keys(), please check your training annotation."
                )
L
add kie  
LDOUBLEV 已提交
449 450 451 452 453 454 455 456 457 458 459 460
            edges.append(ann.get('edge', 0))
        ann_infos = dict(
            image=data['image'],
            points=boxes,
            texts=texts,
            text_inds=text_inds,
            edges=edges,
            labels=labels)

        return self.list_to_numpy(ann_infos)


W
WenmuZhou 已提交
461 462 463 464 465 466 467 468
class AttnLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
T
tink2123 已提交
469 470
        super(AttnLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
W
WenmuZhou 已提交
471 472

    def add_special_char(self, dict_character):
L
LDOUBLEV 已提交
473 474 475
        self.beg_str = "sos"
        self.end_str = "eos"
        dict_character = [self.beg_str] + dict_character + [self.end_str]
W
WenmuZhou 已提交
476 477
        return dict_character

L
LDOUBLEV 已提交
478 479
    def __call__(self, data):
        text = data['label']
W
WenmuZhou 已提交
480
        text = self.encode(text)
L
LDOUBLEV 已提交
481 482
        if text is None:
            return None
L
LDOUBLEV 已提交
483
        if len(text) >= self.max_text_len:
L
LDOUBLEV 已提交
484 485 486
            return None
        data['length'] = np.array(len(text))
        text = [0] + text + [len(self.character) - 1] + [0] * (self.max_text_len
T
tink2123 已提交
487
                                                               - len(text) - 2)
L
LDOUBLEV 已提交
488 489 490 491 492 493 494
        data['label'] = np.array(text)
        return data

    def get_ignored_tokens(self):
        beg_idx = self.get_beg_end_flag_idx("beg")
        end_idx = self.get_beg_end_flag_idx("end")
        return [beg_idx, end_idx]
W
WenmuZhou 已提交
495 496 497 498 499 500 501 502 503 504

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "beg":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "end":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "Unsupport type %s in get_beg_end_flag_idx" \
                          % beg_or_end
        return idx
T
tink2123 已提交
505 506


T
tink2123 已提交
507 508 509 510 511 512 513 514
class SEEDLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
T
tink2123 已提交
515 516
        super(SEEDLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
T
tink2123 已提交
517 518

    def add_special_char(self, dict_character):
T
tink2123 已提交
519
        self.padding = "padding"
T
tink2123 已提交
520
        self.end_str = "eos"
T
tink2123 已提交
521 522 523 524
        self.unknown = "unknown"
        dict_character = dict_character + [
            self.end_str, self.padding, self.unknown
        ]
T
tink2123 已提交
525 526 527 528 529 530 531 532 533
        return dict_character

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
        if len(text) >= self.max_text_len:
            return None
T
rm anno  
tink2123 已提交
534
        data['length'] = np.array(len(text)) + 1  # conclude eos
T
tink2123 已提交
535 536
        text = text + [len(self.character) - 3] + [len(self.character) - 2] * (
            self.max_text_len - len(text) - 1)
T
tink2123 已提交
537 538 539 540
        data['label'] = np.array(text)
        return data


T
tink2123 已提交
541 542 543 544 545 546 547 548
class SRNLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length=25,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
T
tink2123 已提交
549 550
        super(SRNLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
T
tink2123 已提交
551 552 553 554 555 556 557 558

    def add_special_char(self, dict_character):
        dict_character = dict_character + [self.beg_str, self.end_str]
        return dict_character

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
T
tink2123 已提交
559
        char_num = len(self.character)
T
tink2123 已提交
560 561 562 563 564
        if text is None:
            return None
        if len(text) > self.max_text_len:
            return None
        data['length'] = np.array(len(text))
T
tink2123 已提交
565
        text = text + [char_num - 1] * (self.max_text_len - len(text))
T
tink2123 已提交
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
        data['label'] = np.array(text)
        return data

    def get_ignored_tokens(self):
        beg_idx = self.get_beg_end_flag_idx("beg")
        end_idx = self.get_beg_end_flag_idx("end")
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "beg":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "end":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "Unsupport type %s in get_beg_end_flag_idx" \
                          % beg_or_end
        return idx
M
MissPenguin 已提交
583

L
LDOUBLEV 已提交
584

文幕地方's avatar
文幕地方 已提交
585
class TableLabelEncode(AttnLabelEncode):
M
MissPenguin 已提交
586
    """ Convert between text-label and text-index """
L
LDOUBLEV 已提交
587 588 589 590

    def __init__(self,
                 max_text_length,
                 character_dict_path,
文幕地方's avatar
文幕地方 已提交
591 592 593 594
                 replace_empty_cell_token=False,
                 merge_no_span_structure=False,
                 learn_empty_box=False,
                 point_num=4,
L
LDOUBLEV 已提交
595
                 **kwargs):
文幕地方's avatar
文幕地方 已提交
596 597 598 599 600 601 602
        self.max_text_len = max_text_length
        self.lower = False
        self.learn_empty_box = learn_empty_box
        self.merge_no_span_structure = merge_no_span_structure
        self.replace_empty_cell_token = replace_empty_cell_token

        dict_character = []
M
MissPenguin 已提交
603 604
        with open(character_dict_path, "rb") as fin:
            lines = fin.readlines()
文幕地方's avatar
文幕地方 已提交
605 606 607 608 609 610 611 612 613
            for line in lines:
                line = line.decode('utf-8').strip("\n").strip("\r\n")
                dict_character.append(line)

        dict_character = self.add_special_char(dict_character)
        self.dict = {}
        for i, char in enumerate(dict_character):
            self.dict[char] = i
        self.idx2char = {v: k for k, v in self.dict.items()}
L
LDOUBLEV 已提交
614

文幕地方's avatar
文幕地方 已提交
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
        self.character = dict_character
        self.point_num = point_num
        self.pad_idx = self.dict[self.beg_str]
        self.start_idx = self.dict[self.beg_str]
        self.end_idx = self.dict[self.end_str]

        self.td_token = ['<td>', '<td', '<eb></eb>', '<td></td>']
        self.empty_bbox_token_dict = {
            "[]": '<eb></eb>',
            "[' ']": '<eb1></eb1>',
            "['<b>', ' ', '</b>']": '<eb2></eb2>',
            "['\\u2028', '\\u2028']": '<eb3></eb3>',
            "['<sup>', ' ', '</sup>']": '<eb4></eb4>',
            "['<b>', '</b>']": '<eb5></eb5>',
            "['<i>', ' ', '</i>']": '<eb6></eb6>',
            "['<b>', '<i>', '</i>', '</b>']": '<eb7></eb7>',
            "['<b>', '<i>', ' ', '</i>', '</b>']": '<eb8></eb8>',
            "['<i>', '</i>']": '<eb9></eb9>',
            "['<b>', ' ', '\\u2028', ' ', '\\u2028', ' ', '</b>']":
            '<eb10></eb10>',
        }

    @property
    def _max_text_len(self):
        return self.max_text_len + 2
L
LDOUBLEV 已提交
640

M
MissPenguin 已提交
641 642
    def __call__(self, data):
        cells = data['cells']
文幕地方's avatar
文幕地方 已提交
643 644 645 646 647 648 649 650 651 652 653 654 655 656
        structure = data['structure']
        if self.merge_no_span_structure:
            structure = self._merge_no_span_structure(structure)
        if self.replace_empty_cell_token:
            structure = self._replace_empty_cell_token(structure, cells)
        # remove empty token and add " " to span token
        new_structure = []
        for token in structure:
            if token != '':
                if 'span' in token and token[0] != ' ':
                    token = ' ' + token
                new_structure.append(token)
        # encode structure
        structure = self.encode(new_structure)
M
MissPenguin 已提交
657 658
        if structure is None:
            return None
文幕地方's avatar
文幕地方 已提交
659 660 661 662 663

        structure = [self.start_idx] + structure + [self.end_idx
                                                    ]  # add sos abd eos
        structure = structure + [self.pad_idx] * (self._max_text_len -
                                                  len(structure))  # pad
M
MissPenguin 已提交
664 665 666
        structure = np.array(structure)
        data['structure'] = structure

文幕地方's avatar
文幕地方 已提交
667
        if len(structure) > self._max_text_len:
M
MissPenguin 已提交
668 669
            return None

文幕地方's avatar
文幕地方 已提交
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
        # encode box
        bboxes = np.zeros(
            (self._max_text_len, self.point_num), dtype=np.float32)
        bbox_masks = np.zeros((self._max_text_len, 1), dtype=np.float32)

        bbox_idx = 0
        for i, token in enumerate(structure):
            if self.idx2char[token] in self.td_token:
                if 'bbox' in cells[bbox_idx]:
                    bbox = cells[bbox_idx]['bbox'].copy()
                    bbox = np.array(bbox, dtype=np.float32).reshape(-1)
                    bboxes[i] = bbox
                    bbox_masks[i] = 1.0
                if self.learn_empty_box:
                    bbox_masks[i] = 1.0
                bbox_idx += 1
        data['bboxes'] = bboxes
        data['bbox_masks'] = bbox_masks
        return data
M
MissPenguin 已提交
689

文幕地方's avatar
文幕地方 已提交
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
    def _merge_no_span_structure(self, structure):
        new_structure = []
        i = 0
        while i < len(structure):
            token = structure[i]
            if token == '<td>':
                token = '<td></td>'
                i += 1
            new_structure.append(token)
            i += 1
        return new_structure

    def _replace_empty_cell_token(self, token_list, cells):
        bbox_idx = 0
        add_empty_bbox_token_list = []
        for token in token_list:
            if token in ['<td></td>', '<td', '<td>']:
                if 'bbox' not in cells[bbox_idx].keys():
                    content = str(cells[bbox_idx]['tokens'])
                    token = self.empty_bbox_token_dict[content]
                add_empty_bbox_token_list.append(token)
                bbox_idx += 1
M
MissPenguin 已提交
712
            else:
文幕地方's avatar
文幕地方 已提交
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
                add_empty_bbox_token_list.append(token)
        return add_empty_bbox_token_list


class TableMasterLabelEncode(TableLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path,
                 replace_empty_cell_token=False,
                 merge_no_span_structure=False,
                 learn_empty_box=False,
                 point_num=4,
                 **kwargs):
        super(TableMasterLabelEncode, self).__init__(
            max_text_length, character_dict_path, replace_empty_cell_token,
            merge_no_span_structure, learn_empty_box, point_num, **kwargs)

    @property
    def _max_text_len(self):
        return self.max_text_len

    def add_special_char(self, dict_character):
        self.beg_str = '<SOS>'
        self.end_str = '<EOS>'
        self.unknown_str = '<UKN>'
        self.pad_str = '<PAD>'
        dict_character = dict_character
        dict_character = dict_character + [
            self.unknown_str, self.beg_str, self.end_str, self.pad_str
        ]
        return dict_character


class TableBoxEncode(object):
    def __init__(self, use_xywh=False, **kwargs):
        self.use_xywh = use_xywh

    def __call__(self, data):
        img_height, img_width = data['image'].shape[:2]
        bboxes = data['bboxes']
        if self.use_xywh and bboxes.shape[1] == 4:
            bboxes = self.xyxy2xywh(bboxes)
        bboxes[:, 0::2] /= img_width
        bboxes[:, 1::2] /= img_height
        data['bboxes'] = bboxes
        return data

    def xyxy2xywh(self, bboxes):
        """
        Convert coord (x1,y1,x2,y2) to (x,y,w,h).
        where (x1,y1) is top-left, (x2,y2) is bottom-right.
        (x,y) is bbox center and (w,h) is width and height.
        :param bboxes: (x1, y1, x2, y2)
        :return:
        """
        new_bboxes = np.empty_like(bboxes)
        new_bboxes[:, 0] = (bboxes[:, 0] + bboxes[:, 2]) / 2  # x center
        new_bboxes[:, 1] = (bboxes[:, 1] + bboxes[:, 3]) / 2  # y center
        new_bboxes[:, 2] = bboxes[:, 2] - bboxes[:, 0]  # width
        new_bboxes[:, 3] = bboxes[:, 3] - bboxes[:, 1]  # height
        return new_bboxes
A
andyjpaddle 已提交
776 777 778 779 780 781 782 783 784 785


class SARLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
T
tink2123 已提交
786 787
        super(SARLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
A
andyjpaddle 已提交
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812

    def add_special_char(self, dict_character):
        beg_end_str = "<BOS/EOS>"
        unknown_str = "<UKN>"
        padding_str = "<PAD>"
        dict_character = dict_character + [unknown_str]
        self.unknown_idx = len(dict_character) - 1
        dict_character = dict_character + [beg_end_str]
        self.start_idx = len(dict_character) - 1
        self.end_idx = len(dict_character) - 1
        dict_character = dict_character + [padding_str]
        self.padding_idx = len(dict_character) - 1

        return dict_character

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
        if len(text) >= self.max_text_len - 1:
            return None
        data['length'] = np.array(len(text))
        target = [self.start_idx] + text + [self.end_idx]
        padded_text = [self.padding_idx for _ in range(self.max_text_len)]
T
tink2123 已提交
813

A
andyjpaddle 已提交
814 815 816 817 818 819
        padded_text[:len(target)] = target
        data['label'] = np.array(padded_text)
        return data

    def get_ignored_tokens(self):
        return [self.padding_idx]
820 821


822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
class PRENLabelEncode(BaseRecLabelEncode):
    def __init__(self,
                 max_text_length,
                 character_dict_path,
                 use_space_char=False,
                 **kwargs):
        super(PRENLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)

    def add_special_char(self, dict_character):
        padding_str = '<PAD>'  # 0 
        end_str = '<EOS>'  # 1
        unknown_str = '<UNK>'  # 2

        dict_character = [padding_str, end_str, unknown_str] + dict_character
        self.padding_idx = 0
        self.end_idx = 1
        self.unknown_idx = 2

        return dict_character

    def encode(self, text):
        if len(text) == 0 or len(text) >= self.max_text_len:
            return None
        if self.lower:
            text = text.lower()
        text_list = []
        for char in text:
            if char not in self.dict:
                text_list.append(self.unknown_idx)
            else:
                text_list.append(self.dict[char])
        text_list.append(self.end_idx)
        if len(text_list) < self.max_text_len:
            text_list += [self.padding_idx] * (
                self.max_text_len - len(text_list))
        return text_list

    def __call__(self, data):
        text = data['label']
        encoded_text = self.encode(text)
        if encoded_text is None:
            return None
        data['label'] = np.array(encoded_text)
        return data


869 870
class VQATokenLabelEncode(object):
    """
文幕地方's avatar
文幕地方 已提交
871
    Label encode for NLP VQA methods
872 873 874 875 876 877 878 879 880 881 882
    """

    def __init__(self,
                 class_path,
                 contains_re=False,
                 add_special_ids=False,
                 algorithm='LayoutXLM',
                 infer_mode=False,
                 ocr_engine=None,
                 **kwargs):
        super(VQATokenLabelEncode, self).__init__()
文幕地方's avatar
文幕地方 已提交
883
        from paddlenlp.transformers import LayoutXLMTokenizer, LayoutLMTokenizer, LayoutLMv2Tokenizer
884 885 886 887 888 889 890 891 892
        from ppocr.utils.utility import load_vqa_bio_label_maps
        tokenizer_dict = {
            'LayoutXLM': {
                'class': LayoutXLMTokenizer,
                'pretrained_model': 'layoutxlm-base-uncased'
            },
            'LayoutLM': {
                'class': LayoutLMTokenizer,
                'pretrained_model': 'layoutlm-base-uncased'
文幕地方's avatar
文幕地方 已提交
893 894 895 896
            },
            'LayoutLMv2': {
                'class': LayoutLMv2Tokenizer,
                'pretrained_model': 'layoutlmv2-base-uncased'
897 898 899 900 901 902 903 904 905 906 907 908
            }
        }
        self.contains_re = contains_re
        tokenizer_config = tokenizer_dict[algorithm]
        self.tokenizer = tokenizer_config['class'].from_pretrained(
            tokenizer_config['pretrained_model'])
        self.label2id_map, id2label_map = load_vqa_bio_label_maps(class_path)
        self.add_special_ids = add_special_ids
        self.infer_mode = infer_mode
        self.ocr_engine = ocr_engine

    def __call__(self, data):
文幕地方's avatar
文幕地方 已提交
909 910
        # load bbox and label info
        ocr_info = self._load_ocr_info(data)
911

文幕地方's avatar
文幕地方 已提交
912
        height, width, _ = data['image'].shape
913 914 915 916 917

        words_list = []
        bbox_list = []
        input_ids_list = []
        token_type_ids_list = []
文幕地方's avatar
文幕地方 已提交
918
        segment_offset_id = []
919 920
        gt_label_list = []

文幕地方's avatar
文幕地方 已提交
921 922 923 924 925 926 927 928 929
        entities = []

        # for re
        train_re = self.contains_re and not self.infer_mode
        if train_re:
            relations = []
            id2label = {}
            entity_id_to_index_map = {}
            empty_entity = set()
文幕地方's avatar
文幕地方 已提交
930 931 932 933

        data['ocr_info'] = copy.deepcopy(ocr_info)

        for info in ocr_info:
文幕地方's avatar
文幕地方 已提交
934
            if train_re:
935 936 937 938 939 940
                # for re
                if len(info["text"]) == 0:
                    empty_entity.add(info["id"])
                    continue
                id2label[info["id"]] = info["label"]
                relations.extend([tuple(sorted(l)) for l in info["linking"]])
文幕地方's avatar
文幕地方 已提交
941 942
            # smooth_box
            bbox = self._smooth_box(info["bbox"], height, width)
943 944 945 946 947 948 949 950 951 952 953 954

            text = info["text"]
            encode_res = self.tokenizer.encode(
                text, pad_to_max_seq_len=False, return_attention_mask=True)

            if not self.add_special_ids:
                # TODO: use tok.all_special_ids to remove
                encode_res["input_ids"] = encode_res["input_ids"][1:-1]
                encode_res["token_type_ids"] = encode_res["token_type_ids"][1:
                                                                            -1]
                encode_res["attention_mask"] = encode_res["attention_mask"][1:
                                                                            -1]
文幕地方's avatar
文幕地方 已提交
955 956 957 958 959 960
            # parse label
            if not self.infer_mode:
                label = info['label']
                gt_label = self._parse_label(label, encode_res)

            # construct entities for re
文幕地方's avatar
文幕地方 已提交
961 962 963 964
            if train_re:
                if gt_label[0] != self.label2id_map["O"]:
                    entity_id_to_index_map[info["id"]] = len(entities)
                    label = label.upper()
965 966 967 968
                    entities.append({
                        "start": len(input_ids_list),
                        "end":
                        len(input_ids_list) + len(encode_res["input_ids"]),
文幕地方's avatar
文幕地方 已提交
969
                        "label": label.upper(),
970
                    })
文幕地方's avatar
文幕地方 已提交
971 972 973 974 975 976
            else:
                entities.append({
                    "start": len(input_ids_list),
                    "end": len(input_ids_list) + len(encode_res["input_ids"]),
                    "label": 'O',
                })
977 978 979 980
            input_ids_list.extend(encode_res["input_ids"])
            token_type_ids_list.extend(encode_res["token_type_ids"])
            bbox_list.extend([bbox] * len(encode_res["input_ids"]))
            words_list.append(text)
文幕地方's avatar
文幕地方 已提交
981 982 983 984 985 986 987 988 989 990
            segment_offset_id.append(len(input_ids_list))
            if not self.infer_mode:
                gt_label_list.extend(gt_label)

        data['input_ids'] = input_ids_list
        data['token_type_ids'] = token_type_ids_list
        data['bbox'] = bbox_list
        data['attention_mask'] = [1] * len(input_ids_list)
        data['labels'] = gt_label_list
        data['segment_offset_id'] = segment_offset_id
991 992 993 994
        data['tokenizer_params'] = dict(
            padding_side=self.tokenizer.padding_side,
            pad_token_type_id=self.tokenizer.pad_token_type_id,
            pad_token_id=self.tokenizer.pad_token_id)
文幕地方's avatar
文幕地方 已提交
995
        data['entities'] = entities
996

文幕地方's avatar
文幕地方 已提交
997 998 999 1000 1001
        if train_re:
            data['relations'] = relations
            data['id2label'] = id2label
            data['empty_entity'] = empty_entity
            data['entity_id_to_index_map'] = entity_id_to_index_map
1002 1003
        return data

文幕地方's avatar
文幕地方 已提交
1004
    def _load_ocr_info(self, data):
文幕地方's avatar
文幕地方 已提交
1005 1006 1007 1008 1009 1010 1011
        def trans_poly_to_bbox(poly):
            x1 = np.min([p[0] for p in poly])
            x2 = np.max([p[0] for p in poly])
            y1 = np.min([p[1] for p in poly])
            y2 = np.max([p[1] for p in poly])
            return [x1, y1, x2, y2]

文幕地方's avatar
文幕地方 已提交
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
        if self.infer_mode:
            ocr_result = self.ocr_engine.ocr(data['image'], cls=False)
            ocr_info = []
            for res in ocr_result:
                ocr_info.append({
                    "text": res[1][0],
                    "bbox": trans_poly_to_bbox(res[0]),
                    "poly": res[0],
                })
            return ocr_info
        else:
            info = data['label']
            # read text info
            info_dict = json.loads(info)
            return info_dict["ocr_info"]

    def _smooth_box(self, bbox, height, width):
        bbox[0] = int(bbox[0] * 1000.0 / width)
        bbox[2] = int(bbox[2] * 1000.0 / width)
        bbox[1] = int(bbox[1] * 1000.0 / height)
        bbox[3] = int(bbox[3] * 1000.0 / height)
        return bbox

    def _parse_label(self, label, encode_res):
        gt_label = []
        if label.lower() == "other":
            gt_label.extend([0] * len(encode_res["input_ids"]))
        else:
            gt_label.append(self.label2id_map[("b-" + label).upper()])
            gt_label.extend([self.label2id_map[("i-" + label).upper()]] *
                            (len(encode_res["input_ids"]) - 1))
        return gt_label
A
andyjpaddle 已提交
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073


class MultiLabelEncode(BaseRecLabelEncode):
    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
        super(MultiLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)

        self.ctc_encode = CTCLabelEncode(max_text_length, character_dict_path,
                                         use_space_char, **kwargs)
        self.sar_encode = SARLabelEncode(max_text_length, character_dict_path,
                                         use_space_char, **kwargs)

    def __call__(self, data):
        data_ctc = copy.deepcopy(data)
        data_sar = copy.deepcopy(data)
        data_out = dict()
        data_out['img_path'] = data.get('img_path', None)
        data_out['image'] = data['image']
        ctc = self.ctc_encode.__call__(data_ctc)
        sar = self.sar_encode.__call__(data_sar)
        if ctc is None or sar is None:
            return None
        data_out['label_ctc'] = ctc['label']
        data_out['label_sar'] = sar['label']
        data_out['length'] = ctc['length']
        return data_out