det_r50_vd_sast_icdar15.yml 2.7 KB
Newer Older
M
MissPenguin 已提交
1 2 3 4 5 6 7 8 9 10
Global:
  use_gpu: true
  epoch_num: 5000
  log_smooth_window: 20
  print_batch_step: 2
  save_model_dir: ./output/sast_r50_vd_ic15/
  save_epoch_step: 1000
  # evaluation is run every 5000 iterations after the 4000th iteration
  eval_batch_step: [4000, 5000]
  cal_metric_during_train: False
L
LDOUBLEV 已提交
11
  pretrained_model: ./pretrain_models/ResNet50_vd_ssld_pretrained
J
Jethong 已提交
12
  checkpoints:
M
MissPenguin 已提交
13 14
  save_inference_dir:
  use_visualdl: False
J
Jethong 已提交
15
  infer_img:
M
MissPenguin 已提交
16 17
  save_res_path: ./output/sast_r50_vd_ic15/predicts_sast.txt

J
Jethong 已提交
18

M
MissPenguin 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
Architecture:
  model_type: det
  algorithm: SAST
  Transform:
  Backbone:
    name: ResNet_SAST
    layers: 50
  Neck:
    name: SASTFPN
    with_cab: True
  Head:
    name: SASTHead

Loss:
  name: SASTLoss
  
Optimizer:
  name: Adam
  beta1: 0.9
  beta2: 0.999
  lr:
  #  name: Cosine
    learning_rate: 0.001
  #  warmup_epoch: 0
  regularizer:
    name: 'L2'
    factor: 0

PostProcess:
  name: SASTPostProcess
  score_thresh: 0.5
  sample_pts_num: 2
  nms_thresh: 0.2
  expand_scale: 1.0
  shrink_ratio_of_width: 0.3

Metric:
  name: DetMetric
  main_indicator: hmean

Train:
  dataset:
    name: SimpleDataSet
    data_dir: ./train_data/
M
MissPenguin 已提交
63 64
    label_file_list: [./train_data/icdar2013/train_label_json.txt, ./train_data/icdar2015/train_label_json.txt, ./train_data/icdar17_mlt_latin/train_label_json.txt, ./train_data/coco_text_icdar_4pts/train_label_json.txt]
    ratio_list: [0.1, 0.45, 0.3, 0.15]
M
MissPenguin 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - DetLabelEncode: # Class handling label
      - SASTProcessTrain:
          image_shape: [512, 512]
          min_crop_side_ratio: 0.3
          min_crop_size: 24
          min_text_size: 4
          max_text_size: 512
      - KeepKeys:
          keep_keys: ['image', 'score_map', 'border_map', 'training_mask', 'tvo_map', 'tco_map'] # dataloader will return list in this order
  loader:
    shuffle: True
    drop_last: False
    batch_size_per_card: 4
    num_workers: 4

Eval:
  dataset:
    name: SimpleDataSet
    data_dir: ./train_data/icdar2015/text_localization/
    label_file_list:
      - ./train_data/icdar2015/text_localization/test_icdar2015_label.txt
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - DetLabelEncode: # Class handling label
      - DetResizeForTest:
L
LDOUBLEV 已提交
96
          resize_long: 768
M
MissPenguin 已提交
97 98 99 100 101 102 103 104 105 106 107 108
      - NormalizeImage:
          scale: 1./255.
          mean: [0.485, 0.456, 0.406]
          std: [0.229, 0.224, 0.225]
          order: 'hwc'
      - ToCHWImage:
      - KeepKeys:
          keep_keys: ['image', 'shape', 'polys', 'ignore_tags']
  loader:
    shuffle: False
    drop_last: False
    batch_size_per_card: 1 # must be 1
L
LDOUBLEV 已提交
109
    num_workers: 2