inference.md 25.4 KB
Newer Older
L
LDOUBLEV 已提交
1

D
dyning 已提交
2
# 基于Python预测引擎推理
L
LDOUBLEV 已提交
3

W
WenmuZhou 已提交
4
inference 模型(`paddle.jit.save`保存的模型)
L
LDOUBLEV 已提交
5 6 7
一般是模型训练,把模型结构和模型参数保存在文件中的固化模型,多用于预测部署场景。
训练过程中保存的模型是checkpoints模型,保存的只有模型的参数,多用于恢复训练等。
与checkpoints模型相比,inference 模型会额外保存模型的结构信息,在预测部署、加速推理上性能优越,灵活方便,适合于实际系统集成。
L
LDOUBLEV 已提交
8

L
LDOUBLEV 已提交
9
接下来首先介绍如何将训练的模型转换成inference模型,然后将依次介绍文本检测、文本角度分类器、文本识别以及三者串联在CPU、GPU上的预测方法。
L
LDOUBLEV 已提交
10

11 12 13

- [一、训练模型转inference模型](#训练模型转inference模型)
    - [检测模型转inference模型](#检测模型转inference模型)
L
licx 已提交
14
    - [识别模型转inference模型](#识别模型转inference模型)  
J
Jethong 已提交
15 16
    - [方向分类模型转inference模型](#方向分类模型转inference模型)
    - [端到端模型转inference模型](#端到端模型转inference模型)
W
WenmuZhou 已提交
17

18 19 20 21
- [二、文本检测模型推理](#文本检测模型推理)
    - [1. 超轻量中文检测模型推理](#超轻量中文检测模型推理)
    - [2. DB文本检测模型推理](#DB文本检测模型推理)
    - [3. EAST文本检测模型推理](#EAST文本检测模型推理)
L
licx 已提交
22
    - [4. SAST文本检测模型推理](#SAST文本检测模型推理)  
W
WenmuZhou 已提交
23

24 25 26
- [三、文本识别模型推理](#文本识别模型推理)
    - [1. 超轻量中文识别模型推理](#超轻量中文识别模型推理)
    - [2. 基于CTC损失的识别模型推理](#基于CTC损失的识别模型推理)
T
tink2123 已提交
27 28 29
    - [3. 基于SRN损失的识别模型推理](#基于SRN损失的识别模型推理)
    - [4. 自定义文本识别字典的推理](#自定义文本识别字典的推理)
    - [5. 多语言模型的推理](#多语言模型的推理)
W
WenmuZhou 已提交
30

J
Jethong 已提交
31 32 33 34
- [四、端到端模型推理](#端到端模型推理)
    - [1. PGNet端到端模型推理](#SAST文本检测模型推理)

- [五、方向分类模型推理](#方向识别模型推理)
W
WenmuZhou 已提交
35 36
    - [1. 方向分类模型推理](#方向分类模型推理)

J
Jethong 已提交
37
- [六、文本检测、方向分类和文字识别串联推理](#文本检测、方向分类和文字识别串联推理)
38 39
    - [1. 超轻量中文OCR模型推理](#超轻量中文OCR模型推理)
    - [2. 其他模型推理](#其他模型推理)
W
WenmuZhou 已提交
40 41


42
<a name="训练模型转inference模型"></a>
D
dyning 已提交
43
## 一、训练模型转inference模型
44
<a name="检测模型转inference模型"></a>
L
LDOUBLEV 已提交
45 46 47 48
### 检测模型转inference模型

下载超轻量级中文检测模型:
```
W
WenmuZhou 已提交
49
wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar && tar xf ./ch_lite/ch_ppocr_mobile_v2.0_det_train.tar -C ./ch_lite/
L
LDOUBLEV 已提交
50 51 52
```
上述模型是以MobileNetV3为backbone训练的DB算法,将训练好的模型转换成inference模型只需要运行如下命令:
```
W
WenmuZhou 已提交
53 54 55 56 57
# -c 后面设置训练算法的yml配置文件
# -o 配置可选参数
# Global.pretrained_model 参数设置待转换的训练模型地址,不用添加文件后缀 .pdmodel,.pdopt或.pdparams。
# Global.load_static_weights 参数需要设置为 False。
# Global.save_inference_dir参数设置转换的模型将保存的地址。
D
dyning 已提交
58

W
WenmuZhou 已提交
59
python3 tools/export_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_det_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_db/
L
LDOUBLEV 已提交
60
```
W
WenmuZhou 已提交
61
转inference模型时,使用的配置文件和训练时使用的配置文件相同。另外,还需要设置配置文件中的`Global.pretrained_model`参数,其指向训练中保存的模型参数文件。
W
WenmuZhou 已提交
62
转换成功后,在模型保存目录下有三个文件:
L
LDOUBLEV 已提交
63
```
L
LDOUBLEV 已提交
64
inference/det_db/
65 66 67
    ├── inference.pdiparams         # 检测inference模型的参数文件
    ├── inference.pdiparams.info    # 检测inference模型的参数信息,可忽略
    └── inference.pdmodel           # 检测inference模型的program文件
L
LDOUBLEV 已提交
68 69
```

70
<a name="识别模型转inference模型"></a>
L
LDOUBLEV 已提交
71 72 73 74
### 识别模型转inference模型

下载超轻量中文识别模型:
```
W
WenmuZhou 已提交
75
wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar && tar xf ./ch_lite/ch_ppocr_mobile_v2.0_rec_train.tar -C ./ch_lite/
L
LDOUBLEV 已提交
76 77 78 79
```

识别模型转inference模型与检测的方式相同,如下:
```
W
WenmuZhou 已提交
80 81 82 83 84 85
# -c 后面设置训练算法的yml配置文件
# -o 配置可选参数
# Global.pretrained_model 参数设置待转换的训练模型地址,不用添加文件后缀 .pdmodel,.pdopt或.pdparams。
# Global.load_static_weights 参数需要设置为 False。
# Global.save_inference_dir参数设置转换的模型将保存的地址。

W
WenmuZhou 已提交
86
python3 tools/export_model.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_rec_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/rec_crnn/
L
LDOUBLEV 已提交
87
```
L
LDOUBLEV 已提交
88

89
**注意:**如果您是在自己的数据集上训练的模型,并且调整了中文字符的字典文件,请注意修改配置文件中的`character_dict_path`是否是所需要的字典文件。
L
LDOUBLEV 已提交
90

W
WenmuZhou 已提交
91
转换成功后,在目录下有三个文件:
L
LDOUBLEV 已提交
92
```
L
LDOUBLEV 已提交
93
/inference/rec_crnn/
94 95 96
    ├── inference.pdiparams         # 识别inference模型的参数文件
    ├── inference.pdiparams.info    # 识别inference模型的参数信息,可忽略
    └── inference.pdmodel           # 识别inference模型的program文件
L
LDOUBLEV 已提交
97
```
L
LDOUBLEV 已提交
98

W
WenmuZhou 已提交
99 100 101 102 103
<a name="方向分类模型转inference模型"></a>
### 方向分类模型转inference模型

下载方向分类模型:
```
W
WenmuZhou 已提交
104
wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar && tar xf ./ch_lite/ch_ppocr_mobile_v2.0_cls_train.tar -C ./ch_lite/
W
WenmuZhou 已提交
105 106 107 108
```

方向分类模型转inference模型与检测的方式相同,如下:
```
W
WenmuZhou 已提交
109 110 111 112 113
# -c 后面设置训练算法的yml配置文件
# -o 配置可选参数
# Global.pretrained_model 参数设置待转换的训练模型地址,不用添加文件后缀 .pdmodel,.pdopt或.pdparams。
# Global.load_static_weights 参数需要设置为 False。
# Global.save_inference_dir参数设置转换的模型将保存的地址。
W
WenmuZhou 已提交
114

W
WenmuZhou 已提交
115
python3 tools/export_model.py -c configs/cls/cls_mv3.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_cls_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/cls/
W
WenmuZhou 已提交
116 117
```

W
WenmuZhou 已提交
118
转换成功后,在目录下有三个文件:
W
WenmuZhou 已提交
119 120
```
/inference/cls/
121 122 123
    ├── inference.pdiparams         # 分类inference模型的参数文件
    ├── inference.pdiparams.info    # 分类inference模型的参数信息,可忽略
    └── inference.pdmodel           # 分类inference模型的program文件
W
WenmuZhou 已提交
124
```
J
Jethong 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
<a name="端到端模型转inference模型"></a>
### 端到端模型转inference模型

下载端到端模型:
```
wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar && tar xf ./ch_lite/ch_ppocr_mobile_v2.0_cls_train.tar -C ./ch_lite/
```

端到端模型转inference模型与检测的方式相同,如下:
```
# -c 后面设置训练算法的yml配置文件
# -o 配置可选参数
# Global.pretrained_model 参数设置待转换的训练模型地址,不用添加文件后缀 .pdmodel,.pdopt或.pdparams。
# Global.load_static_weights 参数需要设置为 False。
# Global.save_inference_dir参数设置转换的模型将保存的地址。

python3 tools/export_model.py -c configs/e2e/e2e_r50_vd_pg.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_cls_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/e2e/
```

转换成功后,在目录下有三个文件:
```
/inference/e2e/
    ├── inference.pdiparams         # 分类inference模型的参数文件
    ├── inference.pdiparams.info    # 分类inference模型的参数信息,可忽略
    └── inference.pdmodel           # 分类inference模型的program文件
```
W
WenmuZhou 已提交
151

152
<a name="文本检测模型推理"></a>
D
dyning 已提交
153
## 二、文本检测模型推理
L
LDOUBLEV 已提交
154

155
文本检测模型推理,默认使用DB模型的配置参数。当不使用DB模型时,在推理时,需要通过传入相应的参数进行算法适配,细节参考下文。
D
dyning 已提交
156

157 158
<a name="超轻量中文检测模型推理"></a>
### 1. 超轻量中文检测模型推理
D
dyning 已提交
159 160

超轻量中文检测模型推理,可以执行如下命令:
L
LDOUBLEV 已提交
161 162

```
L
LDOUBLEV 已提交
163 164 165
# 下载超轻量中文检测模型:
wget  https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar
tar xf ch_ppocr_mobile_v2.0_det_infer.tar
L
LDOUBLEV 已提交
166
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./ch_ppocr_mobile_v2.0_det_infer/"
L
LDOUBLEV 已提交
167 168
```

169
可视化文本检测结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下:
D
dyning 已提交
170

L
LDOUBLEV 已提交
171
![](../imgs_results/det_res_00018069.jpg)
L
LDOUBLEV 已提交
172

L
LDOUBLEV 已提交
173
通过参数`limit_type``det_limit_side_len`来对图片的尺寸进行限制,
M
MissPenguin 已提交
174
`limit_type`可选参数为[`max`, `min`],
L
LDOUBLEV 已提交
175
`det_limit_size_len` 为正整数,一般设置为32 的倍数,比如960。
L
LDOUBLEV 已提交
176

L
LDOUBLEV 已提交
177 178 179 180 181
参数默认设置为`limit_type='max', det_limit_side_len=960`。表示网络输入图像的最长边不能超过960,
如果超过这个值,会对图像做等宽比的resize操作,确保最长边为`det_limit_side_len`
设置为`limit_type='min', det_limit_side_len=960` 则表示限制图像的最短边为960。

如果输入图片的分辨率比较大,而且想使用更大的分辨率预测,可以设置det_limit_side_len 为想要的值,比如1216:
L
LDOUBLEV 已提交
182
```
L
LDOUBLEV 已提交
183
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det_db/" --det_limit_type=max --det_limit_side_len=1216
D
dyning 已提交
184 185
```

D
dyning 已提交
186
如果想使用CPU进行预测,执行命令如下
D
dyning 已提交
187
```
L
LDOUBLEV 已提交
188
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det_db/"  --use_gpu=False
D
dyning 已提交
189 190
```

191 192
<a name="DB文本检测模型推理"></a>
### 2. DB文本检测模型推理
D
dyning 已提交
193

W
WenmuZhou 已提交
194
首先将DB文本检测训练过程中保存的模型,转换成inference model。以基于Resnet50_vd骨干网络,在ICDAR2015英文数据集训练的模型为例( [模型下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar) ),可以使用如下命令进行转换:
D
dyning 已提交
195

L
LDOUBLEV 已提交
196
```
W
WenmuZhou 已提交
197
python3 tools/export_model.py -c configs/det/det_r50_vd_db.yml -o Global.pretrained_model=./det_r50_vd_db_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_db
D
dyning 已提交
198 199 200 201 202 203 204 205
```

DB文本检测模型推理,可以执行如下命令:

```
python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_db/"
```

206
可视化文本检测结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下:
D
dyning 已提交
207

208
![](../imgs_results/det_res_img_10_db.jpg)
D
dyning 已提交
209

210
**注意**:由于ICDAR2015数据集只有1000张训练图像,且主要针对英文场景,所以上述模型对中文文本图像检测效果会比较差。
D
dyning 已提交
211

212 213
<a name="EAST文本检测模型推理"></a>
### 3. EAST文本检测模型推理
D
dyning 已提交
214

M
MissPenguin 已提交
215
首先将EAST文本检测训练过程中保存的模型,转换成inference model。以基于Resnet50_vd骨干网络,在ICDAR2015英文数据集训练的模型为例( [模型下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_east_v2.0_train.tar) ),可以使用如下命令进行转换:
D
dyning 已提交
216 217

```
W
WenmuZhou 已提交
218
python3 tools/export_model.py -c configs/det/det_r50_vd_east.yml -o Global.pretrained_model=./det_r50_vd_east_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_east
D
dyning 已提交
219 220
```

L
licx 已提交
221
**EAST文本检测模型推理,需要设置参数`--det_algorithm="EAST"`**,可以执行如下命令:
D
dyning 已提交
222 223

```
L
LDOUBLEV 已提交
224
python3 tools/infer/predict_det.py --det_algorithm="EAST" --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_east/"
D
dyning 已提交
225
```
226
可视化文本检测结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下:
D
dyning 已提交
227

M
MissPenguin 已提交
228
![](../imgs_results/det_res_img_10_east.jpg)
D
dyning 已提交
229

230 231 232 233 234 235
**注意**:本代码库中,EAST后处理Locality-Aware NMS有python和c++两种版本,c++版速度明显快于python版。由于c++版本nms编译版本问题,只有python3.5环境下会调用c++版nms,其他情况将调用python版nms。


<a name="SAST文本检测模型推理"></a>
### 4. SAST文本检测模型推理
#### (1). 四边形文本检测模型(ICDAR2015)  
M
MissPenguin 已提交
236
首先将SAST文本检测训练过程中保存的模型,转换成inference model。以基于Resnet50_vd骨干网络,在ICDAR2015英文数据集训练的模型为例([模型下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar)),可以使用如下命令进行转换:
237
```
W
WenmuZhou 已提交
238
python3 tools/export_model.py -c configs/det/det_r50_vd_sast_icdar15.yml -o Global.pretrained_model=./det_r50_vd_sast_icdar15_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_sast_ic15
W
WenmuZhou 已提交
239

240
```
L
licx 已提交
241
**SAST文本检测模型推理,需要设置参数`--det_algorithm="SAST"`**,可以执行如下命令:
242 243 244 245 246
```
python3 tools/infer/predict_det.py --det_algorithm="SAST" --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_sast_ic15/"
```
可视化文本检测结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下:

M
MissPenguin 已提交
247
![](../imgs_results/det_res_img_10_sast.jpg)
248 249

#### (2). 弯曲文本检测模型(Total-Text)  
M
MissPenguin 已提交
250
首先将SAST文本检测训练过程中保存的模型,转换成inference model。以基于Resnet50_vd骨干网络,在Total-Text英文数据集训练的模型为例([模型下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_totaltext_v2.0_train.tar)),可以使用如下命令进行转换:
L
LDOUBLEV 已提交
251

252
```
W
WenmuZhou 已提交
253
python3 tools/export_model.py -c configs/det/det_r50_vd_sast_totaltext.yml -o Global.pretrained_model=./det_r50_vd_sast_totaltext_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_sast_tt
W
WenmuZhou 已提交
254

255 256
```

L
licx 已提交
257
**SAST文本检测模型推理,需要设置参数`--det_algorithm="SAST"`,同时,还需要增加参数`--det_sast_polygon=True`,**可以执行如下命令:
258 259 260 261
```
python3 tools/infer/predict_det.py --det_algorithm="SAST" --image_dir="./doc/imgs_en/img623.jpg" --det_model_dir="./inference/det_sast_tt/" --det_sast_polygon=True
```
可视化文本检测结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下:
L
LDOUBLEV 已提交
262

M
MissPenguin 已提交
263
![](../imgs_results/det_res_img623_sast.jpg)
264 265 266 267 268

**注意**:本代码库中,SAST后处理Locality-Aware NMS有python和c++两种版本,c++版速度明显快于python版。由于c++版本nms编译版本问题,只有python3.5环境下会调用c++版nms,其他情况将调用python版nms。


<a name="文本识别模型推理"></a>
D
dyning 已提交
269
## 三、文本识别模型推理
L
LDOUBLEV 已提交
270

D
dyning 已提交
271
下面将介绍超轻量中文识别模型推理、基于CTC损失的识别模型推理和基于Attention损失的识别模型推理。对于中文文本识别,建议优先选择基于CTC损失的识别模型,实践中也发现基于Attention损失的效果不如基于CTC损失的识别模型。此外,如果训练时修改了文本的字典,请参考下面的自定义文本识别字典的推理。
D
dyning 已提交
272 273


274 275
<a name="超轻量中文识别模型推理"></a>
### 1. 超轻量中文识别模型推理
D
dyning 已提交
276 277 278 279

超轻量中文识别模型推理,可以执行如下命令:

```
W
WenmuZhou 已提交
280 281 282 283
# 下载超轻量中文识别模型:
wget  https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar
tar xf ch_ppocr_mobile_v2.0_rec_infer.tar
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/ch/word_4.jpg" --rec_model_dir="ch_ppocr_mobile_v2.0_rec_infer"
D
dyning 已提交
284 285
```

286
![](../imgs_words/ch/word_4.jpg)
D
dyning 已提交
287 288 289

执行命令后,上面图像的预测结果(识别的文本和得分)会打印到屏幕上,示例如下:

W
WenmuZhou 已提交
290 291 292
```bash
Predicts of ./doc/imgs_words/ch/word_4.jpg:('实力活力', 0.98458153)
```
D
dyning 已提交
293

294 295
<a name="基于CTC损失的识别模型推理"></a>
### 2. 基于CTC损失的识别模型推理
D
dyning 已提交
296

W
WenmuZhou 已提交
297
我们以 CRNN 为例,介绍基于CTC损失的识别模型推理。 Rosetta 使用方式类似,不用设置识别算法参数rec_algorithm。
D
dyning 已提交
298

W
WenmuZhou 已提交
299
首先将 CRNN 文本识别训练过程中保存的模型,转换成inference model。以基于Resnet34_vd骨干网络,使用MJSynth和SynthText两个英文文本识别合成数据集训练
W
WenmuZhou 已提交
300
的模型为例( [模型下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_bilstm_ctc_v2.0_train.tar) ),可以使用如下命令进行转换:
D
dyning 已提交
301 302

```
W
WenmuZhou 已提交
303
python3 tools/export_model.py -c configs/rec/rec_r34_vd_none_bilstm_ctc.yml -o Global.pretrained_model=./rec_r34_vd_none_bilstm_ctc_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/rec_crnn
D
dyning 已提交
304 305
```

W
WenmuZhou 已提交
306
CRNN 文本识别模型推理,可以执行如下命令:
L
LDOUBLEV 已提交
307 308

```
W
WenmuZhou 已提交
309
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./inference/rec_crnn/" --rec_image_shape="3, 32, 100" --rec_char_type="en"
L
LDOUBLEV 已提交
310
```
T
tink2123 已提交
311

312
![](../imgs_words_en/word_336.png)
D
dyning 已提交
313 314 315

执行命令后,上面图像的识别结果如下:

W
WenmuZhou 已提交
316 317 318
```bash
Predicts of ./doc/imgs_words_en/word_336.png:('super', 0.9999073)
```
D
dyning 已提交
319 320

**注意**:由于上述模型是参考[DTRB](https://arxiv.org/abs/1904.01906)文本识别训练和评估流程,与超轻量级中文识别模型训练有两方面不同:
L
LDOUBLEV 已提交
321

D
dyning 已提交
322
- 训练时采用的图像分辨率不同,训练上述模型采用的图像分辨率是[3,32,100],而中文模型训练时,为了保证长文本的识别效果,训练时采用的图像分辨率是[3, 32, 320]。预测推理程序默认的的形状参数是训练中文采用的图像分辨率,即[3, 32, 320]。因此,这里推理上述英文模型时,需要通过参数rec_image_shape设置识别图像的形状。
L
LDOUBLEV 已提交
323

D
dyning 已提交
324
- 字符列表,DTRB论文中实验只是针对26个小写英文本母和10个数字进行实验,总共36个字符。所有大小字符都转成了小写字符,不在上面列表的字符都忽略,认为是空格。因此这里没有输入字符字典,而是通过如下命令生成字典.因此在推理时需要设置参数rec_char_type,指定为英文"en"。
L
LDOUBLEV 已提交
325 326

```
D
dyning 已提交
327 328
self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
dict_character = list(self.character_str)
L
LDOUBLEV 已提交
329
```
T
tink2123 已提交
330 331 332 333
<a name="基于SRN损失的识别模型推理"></a>
### 3. 基于SRN损失的识别模型推理
基于SRN损失的识别模型,需要额外设置识别算法参数 --rec_algorithm="SRN"。
同时需要保证预测shape与训练时一致,如: --rec_image_shape="1, 64, 256"
W
WenmuZhou 已提交
334

T
tink2123 已提交
335 336 337 338 339 340 341 342 343
```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" \
                                   --rec_model_dir="./inference/srn/" \
                                   --rec_image_shape="1, 64, 256" \
                                   --rec_char_type="en" \
                                   --rec_algorithm="SRN"
```

### 4. 自定义文本识别字典的推理
W
WenmuZhou 已提交
344
如果训练时修改了文本的字典,在使用inference模型预测时,需要通过`--rec_char_dict_path`指定使用的字典路径,并且设置 `rec_char_type=ch`
L
LDOUBLEV 已提交
345 346

```
W
WenmuZhou 已提交
347
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_type="ch" --rec_char_dict_path="your text dict path"
L
LDOUBLEV 已提交
348 349
```

W
WenmuZhou 已提交
350
<a name="多语言模型的推理"></a>
T
tink2123 已提交
351
### 5. 多语言模型的推理
W
WenmuZhou 已提交
352
如果您需要预测的是其他语言模型,在使用inference模型预测时,需要通过`--rec_char_dict_path`指定使用的字典路径, 同时为了得到正确的可视化结果,
T
tink2123 已提交
353
需要通过 `--vis_font_path` 指定可视化的字体路径,`doc/fonts/` 路径下有默认提供的小语种字体,例如韩文识别:
W
WenmuZhou 已提交
354 355

```
T
tink2123 已提交
356
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/korean/1.jpg" --rec_model_dir="./your inference model" --rec_char_type="korean" --rec_char_dict_path="ppocr/utils/dict/korean_dict.txt" --vis_font_path="doc/fonts/korean.ttf"
W
WenmuZhou 已提交
357 358 359 360 361
```
![](../imgs_words/korean/1.jpg)

执行命令后,上图的预测结果为:
``` text
W
WenmuZhou 已提交
362
Predicts of ./doc/imgs_words/korean/1.jpg:('바탕으로', 0.9948904)
W
WenmuZhou 已提交
363 364
```

J
Jethong 已提交
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
<a name="端到端模型推理"></a>
## 四、端到端模型推理

端到端模型推理,默认使用PGNet模型的配置参数。当不使用PGNet模型时,在推理时,需要通过传入相应的参数进行算法适配,细节参考下文。
<a name="SAST文本检测模型推理"></a>
### 1. PGNet端到端模型推理
#### (1). 四边形文本检测模型(ICDAR2015)  
首先将PGNet端到端训练过程中保存的模型,转换成inference model。以基于Resnet50_vd骨干网络,在ICDAR2015英文数据集训练的模型为例([模型下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar)),可以使用如下命令进行转换:
```
python3 tools/export_model.py -c configs/e2e/e2e_r50_vd_pg.yml -o Global.pretrained_model=./det_r50_vd_sast_icdar15_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/e2e
```
**PGNet端到端模型推理,需要设置参数`--e2e_algorithm="PGNet"`**,可以执行如下命令:
```
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/img_10.jpg" --e2e_model_dir="./inference/e2e_pgnet_ic15/"
```
可视化文本检测结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'e2e_res'。结果示例如下:

![](../imgs_results/det_res_img_10_sast.jpg)

#### (2). 弯曲文本检测模型(Total-Text)  
首先将PGNet端到端训练过程中保存的模型,转换成inference model。以基于Resnet50_vd骨干网络,在Total-Text英文数据集训练的模型为例([模型下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_totaltext_v2.0_train.tar)),可以使用如下命令进行转换:

```
python3 tools/export_model.py -c configs/e2e/e2e_r50_vd_pg.yml -o Global.pretrained_model=./det_r50_vd_sast_totaltext_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/e2e_pgnet_tt
```

**PGNet端到端模型推理,需要设置参数`--e2e_algorithm="PGNet"`,同时,还需要增加参数`--e2e_pgnet_polygon=True`,**可以执行如下命令:
```
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/img623.jpg" --e2e_model_dir="./inference/e2e_pgnet_tt/" --e2e_pgnet_polygon=True
```
可视化文本端到端结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'e2e_res'。结果示例如下:

![](../imgs_results/e2e_res_img623_pg.jpg)

**注意**:本代码库中,SAST后处理Locality-Aware NMS有python和c++两种版本,c++版速度明显快于python版。由于c++版本nms编译版本问题,只有python3.5环境下会调用c++版nms,其他情况将调用python版nms。


W
WenmuZhou 已提交
402
<a name="方向分类模型推理"></a>
J
Jethong 已提交
403
## 五、方向分类模型推理
W
WenmuZhou 已提交
404 405 406 407 408 409 410 411 412

下面将介绍方向分类模型推理。

<a name="方向分类模型推理"></a>
### 1. 方向分类模型推理

方向分类模型推理,可以执行如下命令:

```
W
WenmuZhou 已提交
413 414 415 416
# 下载超轻量中文方向分类器模型:
wget  https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar
tar xf ch_ppocr_mobile_v2.0_cls_infer.tar
python3 tools/infer/predict_cls.py --image_dir="./doc/imgs_words/ch/word_4.jpg" --cls_model_dir="ch_ppocr_mobile_v2.0_cls_infer"
W
WenmuZhou 已提交
417 418
```

W
WenmuZhou 已提交
419
![](../imgs_words/ch/word_1.jpg)
W
WenmuZhou 已提交
420 421 422

执行命令后,上面图像的预测结果(分类的方向和得分)会打印到屏幕上,示例如下:

W
WenmuZhou 已提交
423
```
W
WenmuZhou 已提交
424
Predicts of ./doc/imgs_words/ch/word_4.jpg:['0', 0.9999982]
W
WenmuZhou 已提交
425
```
W
WenmuZhou 已提交
426 427

<a name="文本检测、方向分类和文字识别串联推理"></a>
J
Jethong 已提交
428
## 六、文本检测、方向分类和文字识别串联推理
429 430
<a name="超轻量中文OCR模型推理"></a>
### 1. 超轻量中文OCR模型推理
D
dyning 已提交
431

W
WenmuZhou 已提交
432
在执行预测时,需要通过参数`image_dir`指定单张图像或者图像集合的路径、参数`det_model_dir`,`cls_model_dir``rec_model_dir`分别指定检测,方向分类和识别的inference模型路径。参数`use_angle_cls`用于控制是否启用方向分类模型。可视化识别结果默认保存到 ./inference_results 文件夹里面。
D
dyning 已提交
433

L
LDOUBLEV 已提交
434
```
W
WenmuZhou 已提交
435
# 使用方向分类器
W
WenmuZhou 已提交
436
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./inference/det_db/" --cls_model_dir="./inference/cls/" --rec_model_dir="./inference/rec_crnn/" --use_angle_cls=true
W
WenmuZhou 已提交
437 438

# 不使用方向分类器
W
WenmuZhou 已提交
439
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./inference/det_db/" --rec_model_dir="./inference/rec_crnn/" --use_angle_cls=false
L
LDOUBLEV 已提交
440 441
```

W
WenmuZhou 已提交
442 443 444 445




D
dyning 已提交
446 447
执行命令后,识别结果图像如下:

W
WenmuZhou 已提交
448
![](../imgs_results/system_res_00018069.jpg)
D
dyning 已提交
449

450 451
<a name="其他模型推理"></a>
### 2. 其他模型推理
D
dyning 已提交
452

453 454
如果想尝试使用其他检测算法或者识别算法,请参考上述文本检测模型推理和文本识别模型推理,更新相应配置和模型。

L
licx 已提交
455
**注意:由于检测框矫正逻辑的局限性,暂不支持使用SAST弯曲文本检测模型(即,使用参数`--det_sast_polygon=True`时)进行模型串联。**
456 457

下面给出基于EAST文本检测和STAR-Net文本识别执行命令:
L
LDOUBLEV 已提交
458 459

```
D
dyning 已提交
460
python3 tools/infer/predict_system.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_east/" --det_algorithm="EAST" --rec_model_dir="./inference/starnet/" --rec_image_shape="3, 32, 100" --rec_char_type="en"
L
LDOUBLEV 已提交
461
```
D
dyning 已提交
462 463 464

执行命令后,识别结果图像如下:

W
WenmuZhou 已提交
465
![](../imgs_results/img_10_east_starnet.jpg)