det_mv3_db_v1.1.yml 1.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
Global:
  algorithm: DB
  use_gpu: true
  epoch_num: 1200
  log_smooth_window: 20
  print_batch_step: 2
  save_model_dir: ./output/det_db/
  save_epoch_step: 200
  # evaluation is run every 5000 iterations after the 4000th iteration
  eval_batch_step: [4000, 5000]
  train_batch_size_per_card: 16
  test_batch_size_per_card: 16
  image_shape: [3, 640, 640]
  reader_yml: ./configs/det/det_db_icdar15_reader.yml
  pretrain_weights: ./pretrain_models/MobileNetV3_large_x0_5_pretrained/
  checkpoints:
  save_res_path: ./output/det_db/predicts_db.txt
  save_inference_dir:
  
Architecture:
  function: ppocr.modeling.architectures.det_model,DetModel

Backbone:
  function: ppocr.modeling.backbones.det_mobilenet_v3,MobileNetV3
  scale: 0.5
  model_name: large
  disable_se: true

Head:
  function: ppocr.modeling.heads.det_db_head,DBHead
  model_name: large
  k: 50
  inner_channels: 96
  out_channels: 2

Loss:
  function: ppocr.modeling.losses.det_db_loss,DBLoss
  balance_loss: true
  main_loss_type: DiceLoss
  alpha: 5
  beta: 10
  ohem_ratio: 3

Optimizer:
  function: ppocr.optimizer,AdamDecay
  base_lr: 0.001
  beta1: 0.9
  beta2: 0.999
  decay:                                                                                                                         
    function: cosine_decay_warmup
    step_each_epoch: 16                                                                                                         
    total_epoch: 1200

PostProcess:
  function: ppocr.postprocess.db_postprocess,DBPostProcess
  thresh: 0.3
  box_thresh: 0.6
  max_candidates: 1000
  unclip_ratio: 1.5