README_CN.md 6.2 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4
# PPOCR 服务化部署

([English](./README.md)|简体中文)

L
LDOUBLEV 已提交
5 6 7 8 9 10
PaddleOCR提供2种服务部署方式:
- 基于PaddleHub Serving的部署:代码路径为"`./deploy/hubserving`",使用方法参考[文档](../../deploy/hubserving/readme.md)
- 基于PaddleServing的部署:代码路径为"`./deploy/pdserving`",按照本教程使用。

# 基于PaddleServing的服务部署

L
LDOUBLEV 已提交
11 12 13
本文档将介绍如何使用[PaddleServing](https://github.com/PaddlePaddle/Serving/blob/develop/README_CN.md)工具部署PPOCR
动态图模型的pipeline在线服务。

L
LDOUBLEV 已提交
14 15 16 17
相比较于hubserving部署,PaddleServing具备以下优点:
- 支持客户端和服务端之间高并发和高效通信
- 支持 工业级的服务能力 例如模型管理,在线加载,在线A/B测试等
- 支持 多种编程语言 开发客户端,例如C++, Python和Java
L
LDOUBLEV 已提交
18

L
LDOUBLEV 已提交
19
更多有关PaddleServing服务化部署框架介绍和使用教程参考[文档](https://github.com/PaddlePaddle/Serving/blob/develop/README_CN.md)
L
LDOUBLEV 已提交
20

L
LDOUBLEV 已提交
21 22 23 24 25
## 目录
- [环境准备](#环境准备)
- [模型转换](#模型转换)
- [Paddle Serving pipeline部署](#部署)
- [FAQ](#FAQ)
L
LDOUBLEV 已提交
26

L
LDOUBLEV 已提交
27
<a name="环境准备"></a>
L
LDOUBLEV 已提交
28 29 30 31
## 环境准备

需要准备PaddleOCR的运行环境和Paddle Serving的运行环境。

L
LDOUBLEV 已提交
32
- 准备PaddleOCR的运行环境参考[链接](../../doc/doc_ch/installation.md)
L
LDOUBLEV 已提交
33

L
LDOUBLEV 已提交
34
- 准备PaddleServing的运行环境,步骤如下
L
LDOUBLEV 已提交
35

L
LDOUBLEV 已提交
36 37 38 39 40 41 42 43 44 45
1. 安装serving,用于启动服务
    ```
    pip3 install paddle-serving-server==0.5.0 # for CPU
    pip3 install paddle-serving-server-gpu==0.5.0 # for GPU
    # 其他GPU环境需要确认环境再选择执行如下命令
    pip3 install paddle-serving-server-gpu==0.5.0.post9 # GPU with CUDA9.0
    pip3 install paddle-serving-server-gpu==0.5.0.post10 # GPU with CUDA10.0
    pip3 install paddle-serving-server-gpu==0.5.0.post101 # GPU with CUDA10.1 + TensorRT6
    pip3 install paddle-serving-server-gpu==0.5.0.post11 # GPU with CUDA10.1 + TensorRT7
    ```
L
LDOUBLEV 已提交
46 47

2. 安装client,用于向服务发送请求
L
LDOUBLEV 已提交
48 49
    ```
    pip3 install paddle-serving-client==0.5.0  # for CPU
L
LDOUBLEV 已提交
50

L
LDOUBLEV 已提交
51 52
    pip3 install paddle-serving-client-gpu==0.5.0   # for GPU
    ```
L
LDOUBLEV 已提交
53 54

3. 安装serving-app
L
LDOUBLEV 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
    ```
    pip3 install paddle-serving-app==0.3.0
    ```
    **note:**  安装0.3.0版本的serving-app后,为了能加载动态图模型,需要修改serving_app的源码,具体为:
    ```
    # 找到paddle_serving_app的安装目录,找到并编辑local_predict.py文件
    vim /usr/local/lib/python3.7/site-packages/paddle_serving_app/local_predict.py
    # 将local_predict.py 的第85行 config = AnalysisConfig(model_path)  替换为:
    if os.path.exists(os.path.join(model_path, "__params__")):
        config = AnalysisConfig(os.path.join(model_path, "__model__"), os.path.join(model_path, "__params__"))
    else:
        config = AnalysisConfig(model_path)
    ```

    **Note:** 如果要安装最新版本的PaddleServing参考[链接](https://github.com/PaddlePaddle/Serving/blob/develop/doc/LATEST_PACKAGES.md)。

<a name="模型转换"></a>
L
LDOUBLEV 已提交
72
## 模型转换
L
LDOUBLEV 已提交
73

L
LDOUBLEV 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
使用PaddleServing做服务化部署时,需要将保存的inference模型转换为serving易于部署的模型。

首先,下载PPOCR的[inference模型](https://github.com/PaddlePaddle/PaddleOCR#pp-ocr-20-series-model-listupdate-on-dec-15)
```
# 下载并解压 OCR 文本检测模型
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar && tar xf ch_ppocr_server_v2.0_det_infer.tar
# 下载并解压 OCR 文本识别模型
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar && tar xf ch_ppocr_server_v2.0_rec_infer.tar

# 转换检测模型
python3 -m paddle_serving_client.convert --dirname ./ch_ppocr_server_v2.0_det_infer/ \
                                         --model_filename inference.pdmodel          \
                                         --params_filename inference.pdiparams       \
                                         --serving_server ./ppocr_det_server_2.0_serving/ \
                                         --serving_client ./ppocr_det_server_2.0_client/

# 转换识别模型
python3 -m paddle_serving_client.convert --dirname ./ch_ppocr_server_v2.0_rec_infer/ \
                                         --model_filename inference.pdmodel          \
                                         --params_filename inference.pdiparams       \
                                         --serving_server ./ppocr_rec_server_2.0_serving/  \
                                         --serving_client ./ppocr_rec_server_2.0_client/
```

检测模型转换完成后,会在当前文件夹多出`ppocr_det_server_2.0_serving``ppocr_det_server_2.0_client`的文件夹,具备如下格式:
```
|- ppocr_det_server_2.0_serving/
  |- __model__  
  |- __params__
  |- serving_server_conf.prototxt  
  |- serving_server_conf.stream.prototxt

|- ppocr_det_server_2.0_client
  |- serving_client_conf.prototxt  
  |- serving_client_conf.stream.prototxt

```
识别模型同理。

L
LDOUBLEV 已提交
113
<a name="部署"></a>
L
LDOUBLEV 已提交
114 115
## Paddle Serving pipeline部署

L
LDOUBLEV 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
1. 下载PaddleOCR代码,若已下载可跳过此步骤
    ```
    git clone https://github.com/PaddlePaddle/PaddleOCR

    # 进入到工作目录
    cd PaddleOCR/deploy/pdserver/
    ```
    pdserver目录包含启动pipeline服务和发送预测请求的代码,包括:
    ```
    __init__.py
    config.yml            # 启动服务的配置文件
    ocr_reader.py         # OCR模型预处理和后处理的代码实现
    pipeline_http_client.py   # 发送pipeline预测请求的脚本
    web_service.py        # 启动pipeline服务端的脚本
    ```

2. 启动服务可运行如下命令:
    ```
    # 启动服务,运行日志保存在log.txt
    python3 web_service.py &>log.txt &
    ```
    成功启动服务后,log.txt中会打印类似如下日志
    ![](./imgs/start_server.png)

3. 发送服务请求:
    ```
    python3 pipeline_http_client.py
    ```
    成功运行后,模型预测的结果会打印在cmd窗口中,结果示例为:
    ![](./imgs/results.png)


<a name="FAQ"></a>
L
LDOUBLEV 已提交
149
## FAQ
L
LDOUBLEV 已提交
150 151
** Q1**: 发送请求后没有结果返回或者提示输出解码报错

L
LDOUBLEV 已提交
152 153 154 155 156
** A1**: 启动服务和发送请求时不要设置代理,可以在启动服务前和发送请求前关闭代理,关闭代理的命令是:
```
unset https_proxy
unset http_proxy
```