utility.py 14.4 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
W
WenmuZhou 已提交
16
import os
W
WenmuZhou 已提交
17
import sys
L
LDOUBLEV 已提交
18 19
import cv2
import numpy as np
L
LDOUBLEV 已提交
20 21
import json
from PIL import Image, ImageDraw, ImageFont
22
import math
W
WenmuZhou 已提交
23 24
from paddle.fluid.core import AnalysisConfig
from paddle.fluid.core import create_paddle_predictor
L
LDOUBLEV 已提交
25 26 27 28 29 30 31


def parse_args():
    def str2bool(v):
        return v.lower() in ("true", "t", "1")

    parser = argparse.ArgumentParser()
W
WenmuZhou 已提交
32
    # params for prediction engine
L
LDOUBLEV 已提交
33 34 35
    parser.add_argument("--use_gpu", type=str2bool, default=True)
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
L
LDOUBLEV 已提交
36 37
    parser.add_argument("--use_fp16", type=str2bool, default=False)
    parser.add_argument("--max_batch_size", type=int, default=10)
L
LDOUBLEV 已提交
38 39
    parser.add_argument("--gpu_mem", type=int, default=8000)

W
WenmuZhou 已提交
40
    # params for text detector
L
LDOUBLEV 已提交
41 42 43
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_dir", type=str)
W
WenmuZhou 已提交
44 45
    parser.add_argument("--det_limit_side_len", type=float, default=960)
    parser.add_argument("--det_limit_type", type=str, default='max')
L
LDOUBLEV 已提交
46

W
WenmuZhou 已提交
47
    # DB parmas
L
LDOUBLEV 已提交
48 49
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
    parser.add_argument("--det_db_box_thresh", type=float, default=0.5)
W
WenmuZhou 已提交
50
    parser.add_argument("--det_db_unclip_ratio", type=float, default=1.6)
L
LDOUBLEV 已提交
51
    parser.add_argument("--max_batch_size", type=int, default=10)
W
WenmuZhou 已提交
52
    # EAST parmas
L
LDOUBLEV 已提交
53 54 55 56
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

W
WenmuZhou 已提交
57
    # SAST parmas
L
licx 已提交
58 59
    parser.add_argument("--det_sast_score_thresh", type=float, default=0.5)
    parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)
60
    parser.add_argument("--det_sast_polygon", type=bool, default=False)
L
licx 已提交
61

W
WenmuZhou 已提交
62
    # params for text recognizer
L
LDOUBLEV 已提交
63 64
    parser.add_argument("--rec_algorithm", type=str, default='CRNN')
    parser.add_argument("--rec_model_dir", type=str)
T
fix bug  
tink2123 已提交
65 66
    parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
    parser.add_argument("--rec_char_type", type=str, default='ch')
L
LDOUBLEV 已提交
67
    parser.add_argument("--rec_batch_num", type=int, default=1)
T
fix bug  
tink2123 已提交
68
    parser.add_argument("--max_text_length", type=int, default=25)
L
LDOUBLEV 已提交
69 70 71 72
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
W
WenmuZhou 已提交
73 74 75
    parser.add_argument("--use_space_char", type=str2bool, default=True)
    parser.add_argument(
        "--vis_font_path", type=str, default="./doc/simfang.ttf")
W
WenmuZhou 已提交
76
    parser.add_argument("--drop_score", type=float, default=0.5)
W
WenmuZhou 已提交
77 78 79 80 81 82

    # params for text classifier
    parser.add_argument("--use_angle_cls", type=str2bool, default=False)
    parser.add_argument("--cls_model_dir", type=str)
    parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
    parser.add_argument("--label_list", type=list, default=['0', '180'])
L
LDOUBLEV 已提交
83
    parser.add_argument("--cls_batch_num", type=int, default=6)
W
WenmuZhou 已提交
84 85 86 87 88 89 90
    parser.add_argument("--cls_thresh", type=float, default=0.9)

    parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
    parser.add_argument("--use_zero_copy_run", type=str2bool, default=False)

    parser.add_argument("--use_pdserving", type=str2bool, default=False)

L
LDOUBLEV 已提交
91 92 93
    return parser.parse_args()


W
WenmuZhou 已提交
94 95 96 97 98 99 100 101 102 103 104
def create_predictor(args, mode, logger):
    if mode == "det":
        model_dir = args.det_model_dir
    elif mode == 'cls':
        model_dir = args.cls_model_dir
    else:
        model_dir = args.rec_model_dir

    if model_dir is None:
        logger.info("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)
文幕地方's avatar
文幕地方 已提交
105 106
    model_file_path = model_dir + "/inference.pdmodel"
    params_file_path = model_dir + "/inference.pdiparams"
W
WenmuZhou 已提交
107 108 109 110 111 112 113 114 115 116 117
    if not os.path.exists(model_file_path):
        logger.info("not find model file path {}".format(model_file_path))
        sys.exit(0)
    if not os.path.exists(params_file_path):
        logger.info("not find params file path {}".format(params_file_path))
        sys.exit(0)

    config = AnalysisConfig(model_file_path, params_file_path)

    if args.use_gpu:
        config.enable_use_gpu(args.gpu_mem, 0)
L
LDOUBLEV 已提交
118 119 120 121 122
        if args.use_tensorrt:
            config.enable_tensorrt_engine(
                precision_mode=AnalysisConfig.Precision.Half
                if args.use_fp16 else AnalysisConfig.Precision.Float32,
                max_batch_size=args.max_batch_size)
W
WenmuZhou 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
    else:
        config.disable_gpu()
        config.set_cpu_math_library_num_threads(6)
        if args.enable_mkldnn:
            # cache 10 different shapes for mkldnn to avoid memory leak
            config.set_mkldnn_cache_capacity(10)
            config.enable_mkldnn()

    # config.enable_memory_optim()
    config.disable_glog_info()

    if args.use_zero_copy_run:
        config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
        config.switch_use_feed_fetch_ops(False)
    else:
        config.switch_use_feed_fetch_ops(True)

    predictor = create_paddle_predictor(config)
    input_names = predictor.get_input_names()
    for name in input_names:
        input_tensor = predictor.get_input_tensor(name)
    output_names = predictor.get_output_names()
    output_tensors = []
    for output_name in output_names:
        output_tensor = predictor.get_output_tensor(output_name)
        output_tensors.append(output_tensor)
    return predictor, input_tensor, output_tensors


L
LDOUBLEV 已提交
152
def draw_text_det_res(dt_boxes, img_path):
L
LDOUBLEV 已提交
153 154 155 156
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
L
LDOUBLEV 已提交
157
    return src_im
L
LDOUBLEV 已提交
158 159


L
LDOUBLEV 已提交
160 161
def resize_img(img, input_size=600):
    """
L
LDOUBLEV 已提交
162
    resize img and limit the longest side of the image to input_size
L
LDOUBLEV 已提交
163 164 165 166 167
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
W
WenmuZhou 已提交
168 169
    img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return img
L
LDOUBLEV 已提交
170 171


W
WenmuZhou 已提交
172 173 174 175 176 177
def draw_ocr(image,
             boxes,
             txts=None,
             scores=None,
             drop_score=0.5,
             font_path="./doc/simfang.ttf"):
178 179 180
    """
    Visualize the results of OCR detection and recognition
    args:
L
LDOUBLEV 已提交
181
        image(Image|array): RGB image
182 183 184 185
        boxes(list): boxes with shape(N, 4, 2)
        txts(list): the texts
        scores(list): txxs corresponding scores
        drop_score(float): only scores greater than drop_threshold will be visualized
W
WenmuZhou 已提交
186
        font_path: the path of font which is used to draw text
187 188 189
    return(array):
        the visualized img
    """
L
LDOUBLEV 已提交
190 191
    if scores is None:
        scores = [1] * len(boxes)
W
WenmuZhou 已提交
192 193 194 195
    box_num = len(boxes)
    for i in range(box_num):
        if scores is not None and (scores[i] < drop_score or
                                   math.isnan(scores[i])):
L
LDOUBLEV 已提交
196
            continue
W
WenmuZhou 已提交
197
        box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
L
LDOUBLEV 已提交
198
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
W
WenmuZhou 已提交
199
    if txts is not None:
L
LDOUBLEV 已提交
200
        img = np.array(resize_img(image, input_size=600))
201
        txt_img = text_visual(
W
WenmuZhou 已提交
202 203 204 205 206 207
            txts,
            scores,
            img_h=img.shape[0],
            img_w=600,
            threshold=drop_score,
            font_path=font_path)
208
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
L
LDOUBLEV 已提交
209 210
        return img
    return image
211 212


W
WenmuZhou 已提交
213 214 215 216 217 218
def draw_ocr_box_txt(image,
                     boxes,
                     txts,
                     scores=None,
                     drop_score=0.5,
                     font_path="./doc/simfang.ttf"):
219 220 221
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = Image.new('RGB', (w, h), (255, 255, 255))
222 223

    import random
L
LDOUBLEV 已提交
224

225 226 227
    random.seed(0)
    draw_left = ImageDraw.Draw(img_left)
    draw_right = ImageDraw.Draw(img_right)
W
WenmuZhou 已提交
228 229 230
    for idx, (box, txt) in enumerate(zip(boxes, txts)):
        if scores is not None and scores[idx] < drop_score:
            continue
T
tink2123 已提交
231 232
        color = (random.randint(0, 255), random.randint(0, 255),
                 random.randint(0, 255))
233
        draw_left.polygon(box, fill=color)
T
tink2123 已提交
234 235 236 237 238 239 240 241 242 243
        draw_right.polygon(
            [
                box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
                box[2][1], box[3][0], box[3][1]
            ],
            outline=color)
        box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
            1])**2)
        box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
            1])**2)
244 245
        if box_height > 2 * box_width:
            font_size = max(int(box_width * 0.9), 10)
W
WenmuZhou 已提交
246
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
247 248 249
            cur_y = box[0][1]
            for c in txt:
                char_size = font.getsize(c)
T
tink2123 已提交
250 251
                draw_right.text(
                    (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
252 253 254
                cur_y += char_size[1]
        else:
            font_size = max(int(box_height * 0.8), 10)
W
WenmuZhou 已提交
255
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
T
tink2123 已提交
256 257
            draw_right.text(
                [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
258 259 260 261
    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(img_right, (w, 0, w * 2, h))
262 263 264
    return np.array(img_show)


265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
def str_count(s):
    """
    Count the number of Chinese characters,
    a single English character and a single number
    equal to half the length of Chinese characters.
    args:
        s(string): the input of string
    return(int):
        the number of Chinese characters
    """
    import string
    count_zh = count_pu = 0
    s_len = len(s)
    en_dg_count = 0
    for c in s:
        if c in string.ascii_letters or c.isdigit() or c.isspace():
            en_dg_count += 1
        elif c.isalpha():
            count_zh += 1
        else:
            count_pu += 1
    return s_len - math.ceil(en_dg_count / 2)


W
WenmuZhou 已提交
289 290 291 292 293 294
def text_visual(texts,
                scores,
                img_h=400,
                img_w=600,
                threshold=0.,
                font_path="./doc/simfang.ttf"):
295 296 297 298 299 300 301
    """
    create new blank img and draw txt on it
    args:
        texts(list): the text will be draw
        scores(list|None): corresponding score of each txt
        img_h(int): the height of blank img
        img_w(int): the width of blank img
W
WenmuZhou 已提交
302
        font_path: the path of font which is used to draw text
303 304 305 306 307 308 309 310 311
    return(array):
    """
    if scores is not None:
        assert len(texts) == len(
            scores), "The number of txts and corresponding scores must match"

    def create_blank_img():
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
        blank_img[:, img_w - 1:] = 0
L
LDOUBLEV 已提交
312 313
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)
314
        return blank_img, draw_txt
L
LDOUBLEV 已提交
315

316 317 318 319
    blank_img, draw_txt = create_blank_img()

    font_size = 20
    txt_color = (0, 0, 0)
W
WenmuZhou 已提交
320
    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
321 322 323

    gap = font_size + 5
    txt_img_list = []
L
LDOUBLEV 已提交
324
    count, index = 1, 0
325 326
    for idx, txt in enumerate(texts):
        index += 1
L
LDOUBLEV 已提交
327
        if scores[idx] < threshold or math.isnan(scores[idx]):
328 329 330 331 332 333 334 335 336 337 338
            index -= 1
            continue
        first_line = True
        while str_count(txt) >= img_w // font_size - 4:
            tmp = txt
            txt = tmp[:img_w // font_size - 4]
            if first_line:
                new_txt = str(index) + ': ' + txt
                first_line = False
            else:
                new_txt = '    ' + txt
L
LDOUBLEV 已提交
339
            draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
340 341 342 343 344
            txt = tmp[img_w // font_size - 4:]
            if count >= img_h // gap - 1:
                txt_img_list.append(np.array(blank_img))
                blank_img, draw_txt = create_blank_img()
                count = 0
L
LDOUBLEV 已提交
345
            count += 1
346 347 348
        if first_line:
            new_txt = str(index) + ': ' + txt + '   ' + '%.3f' % (scores[idx])
        else:
L
LDOUBLEV 已提交
349
            new_txt = "  " + txt + "  " + '%.3f' % (scores[idx])
L
LDOUBLEV 已提交
350
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
351
        # whether add new blank img or not
L
LDOUBLEV 已提交
352
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
353 354 355
            txt_img_list.append(np.array(blank_img))
            blank_img, draw_txt = create_blank_img()
            count = 0
L
LDOUBLEV 已提交
356
        count += 1
357 358 359 360 361 362
    txt_img_list.append(np.array(blank_img))
    if len(txt_img_list) == 1:
        blank_img = np.array(txt_img_list[0])
    else:
        blank_img = np.concatenate(txt_img_list, axis=1)
    return np.array(blank_img)
L
LDOUBLEV 已提交
363 364


D
dyning 已提交
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
def base64_to_cv2(b64str):
    import base64
    data = base64.b64decode(b64str.encode('utf8'))
    data = np.fromstring(data, np.uint8)
    data = cv2.imdecode(data, cv2.IMREAD_COLOR)
    return data


def draw_boxes(image, boxes, scores=None, drop_score=0.5):
    if scores is None:
        scores = [1] * len(boxes)
    for (box, score) in zip(boxes, scores):
        if score < drop_score:
            continue
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
    return image


L
LDOUBLEV 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
if __name__ == '__main__':
    test_img = "./doc/test_v2"
    predict_txt = "./doc/predict.txt"
    f = open(predict_txt, 'r')
    data = f.readlines()
    img_path, anno = data[0].strip().split('\t')
    img_name = os.path.basename(img_path)
    img_path = os.path.join(test_img, img_name)
    image = Image.open(img_path)

    data = json.loads(anno)
    boxes, txts, scores = [], [], []
    for dic in data:
        boxes.append(dic['points'])
        txts.append(dic['transcription'])
        scores.append(round(dic['scores'], 3))

W
WenmuZhou 已提交
401
    new_img = draw_ocr(image, boxes, txts, scores)
L
LDOUBLEV 已提交
402

M
MissPenguin 已提交
403
    cv2.imwrite(img_name, new_img)