detection_en.md 12.1 KB
Newer Older
1
# Text Detection
L
LDOUBLEV 已提交
2

3
This section uses the icdar2015 dataset as an example to introduce the training, evaluation, and testing of the detection model in PaddleOCR.
L
LDOUBLEV 已提交
4

文幕地方's avatar
文幕地方 已提交
5 6 7 8 9 10 11 12 13 14 15 16 17
- [1. Data and Weights Preparation](#1-data-and-weights-preparation)
  - [1.1 Data Preparation](#11-data-preparation)
  - [1.2 Download Pre-trained Model](#12-download-pre-trained-model)
- [2. Training](#2-training)
  - [2.1 Start Training](#21-start-training)
  - [2.2 Load Trained Model and Continue Training](#22-load-trained-model-and-continue-training)
  - [2.3 Training with New Backbone](#23-training-with-new-backbone)
  - [2.4 Training with knowledge distillation](#24-training-with-knowledge-distillation)
- [3. Evaluation and Test](#3-evaluation-and-test)
  - [3.1 Evaluation](#31-evaluation)
  - [3.2 Test](#32-test)
- [4. Inference](#4-inference)
- [5. FAQ](#5-faq)
K
Khanh Tran 已提交
18

19
## 1. Data and Weights Preparation
K
Khanh Tran 已提交
20

21
### 1.1 Data Preparation
L
LDOUBLEV 已提交
22

文幕地方's avatar
文幕地方 已提交
23
To prepare datasets, refer to [ocr_datasets](./dataset/ocr_datasets_en.md) .
K
Khanh Tran 已提交
24

fanruinet's avatar
fanruinet 已提交
25
### 1.2 Download Pre-trained Model
26

fanruinet's avatar
fanruinet 已提交
27 28
First download the pre-trained model. The detection model of PaddleOCR currently supports 3 backbones, namely MobileNetV3, ResNet18_vd and ResNet50_vd. You can use the model in [PaddleClas](https://github.com/PaddlePaddle/PaddleClas/tree/release/2.0/ppcls/modeling/architectures) to replace backbone according to your needs.
And the responding download link of backbone pre-trained weights can be found in (https://github.com/PaddlePaddle/PaddleClas/blob/release%2F2.0/README_cn.md#resnet%E5%8F%8A%E5%85%B6vd%E7%B3%BB%E5%88%97).
K
Khanh Tran 已提交
29

L
licx 已提交
30
```shell
K
Khanh Tran 已提交
31 32
cd PaddleOCR/
# Download the pre-trained model of MobileNetV3
T
tink2123 已提交
33
wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/pretrained/MobileNetV3_large_x0_5_pretrained.pdparams
W
WenmuZhou 已提交
34
# or, download the pre-trained model of ResNet18_vd
T
tink2123 已提交
35
wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/pretrained/ResNet18_vd_pretrained.pdparams
W
WenmuZhou 已提交
36
# or, download the pre-trained model of ResNet50_vd
T
tink2123 已提交
37
wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/pretrained/ResNet50_vd_ssld_pretrained.pdparams
38

39
```
K
Khanh Tran 已提交
40

qq_25193841's avatar
qq_25193841 已提交
41
## 2. Training
42 43 44

### 2.1 Start Training

M
MissPenguin 已提交
45
*If CPU version installed, please set the parameter `use_gpu` to `false` in the configuration.*
L
licx 已提交
46
```shell
47
python3 tools/train.py -c configs/det/det_mv3_db.yml  \
qq_25193841's avatar
qq_25193841 已提交
48
         -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
K
Khanh Tran 已提交
49 50
```

M
MissPenguin 已提交
51 52
In the above instruction, use `-c` to select the training to use the `configs/det/det_db_mv3.yml` configuration file.
For a detailed explanation of the configuration file, please refer to [config](./config_en.md).
K
Khanh Tran 已提交
53

54
You can also use `-o` to change the training parameters without modifying the yml file. For example, adjust the training learning rate to 0.0001
L
licx 已提交
55
```shell
L
update  
LDOUBLEV 已提交
56
# single GPU training
57
python3 tools/train.py -c configs/det/det_mv3_db.yml -o   \
qq_25193841's avatar
qq_25193841 已提交
58
         Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained  \
59
         Optimizer.base_lr=0.0001
L
update  
LDOUBLEV 已提交
60 61

# multi-GPU training
62
# Set the GPU ID used by the '--gpus' parameter.
qq_25193841's avatar
qq_25193841 已提交
63
python3 -m paddle.distributed.launch --gpus '0,1,2,3'  tools/train.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
S
stephon 已提交
64

B
Bin Lu 已提交
65
# multi-Node, multi-GPU training
B
Bin Lu 已提交
66
# Set the IPs of your nodes used by the '--ips' parameter. Set the GPU ID used by the '--gpus' parameter.
S
stephon 已提交
67
python3 -m paddle.distributed.launch --ips="xx.xx.xx.xx,xx.xx.xx.xx" --gpus '0,1,2,3' tools/train.py -c configs/det/det_mv3_db.yml \
B
Bin Lu 已提交
68 69
     -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
```
S
stephon 已提交
70 71
**Note:** For multi-Node multi-GPU training, you need to replace the `ips` value in the preceding command with the address of your machine, and the machines must be able to ping each other. In addition, it requires activating commands separately on multiple machines when we start the training. The command for viewing the IP address of the machine is `ifconfig`.

B
Bin Lu 已提交
72
If you want to further speed up the training, you can use [automatic mixed precision training](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/01_paddle2.0_introduction/basic_concept/amp_en.html). for single card training, the command is as follows:
B
Bin Lu 已提交
73 74 75 76
```
python3 tools/train.py -c configs/det/det_mv3_db.yml \
     -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained \
     Global.use_amp=True Global.scale_loss=1024.0 Global.use_dynamic_loss_scaling=True
K
Khanh Tran 已提交
77 78
```

79
### 2.2 Load Trained Model and Continue Training
80
If you expect to load trained model and continue the training again, you can specify the parameter `Global.checkpoints` as the model path to be loaded.
L
LDOUBLEV 已提交
81 82

For example:
L
licx 已提交
83
```shell
L
LDOUBLEV 已提交
84
python3 tools/train.py -c configs/det/det_mv3_db.yml -o Global.checkpoints=./your/trained/model
L
LDOUBLEV 已提交
85 86
```

qq_25193841's avatar
qq_25193841 已提交
87
**Note**: The priority of `Global.checkpoints` is higher than that of `Global.pretrained_model`, that is, when two parameters are specified at the same time, the model specified by `Global.checkpoints` will be loaded first. If the model path specified by `Global.checkpoints` is wrong, the one specified by `Global.pretrained_model` will be loaded.
L
LDOUBLEV 已提交
88 89


90
### 2.3 Training with New Backbone
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139

The network part completes the construction of the network, and PaddleOCR divides the network into four parts, which are under [ppocr/modeling](../../ppocr/modeling). The data entering the network will pass through these four parts in sequence(transforms->backbones->
necks->heads).

```bash
├── architectures # Code for building network
├── transforms    # Image Transformation Module
├── backbones     # Feature extraction module
├── necks         # Feature enhancement module
└── heads         # Output module
```

If the Backbone to be replaced has a corresponding implementation in PaddleOCR, you can directly modify the parameters in the `Backbone` part of the configuration yml file.

However, if you want to use a new Backbone, an example of replacing the backbones is as follows:

1. Create a new file under the [ppocr/modeling/backbones](../../ppocr/modeling/backbones) folder, such as my_backbone.py.
2. Add code in the my_backbone.py file, the sample code is as follows:

```python
import paddle
import paddle.nn as nn
import paddle.nn.functional as F


class MyBackbone(nn.Layer):
    def __init__(self, *args, **kwargs):
        super(MyBackbone, self).__init__()
        # your init code
        self.conv = nn.xxxx

    def forward(self, inputs):
        # your network forward
        y = self.conv(inputs)
        return y
```

3. Import the added module in the [ppocr/modeling/backbones/\__init\__.py](../../ppocr/modeling/backbones/__init__.py) file.

After adding the four-part modules of the network, you only need to configure them in the configuration file to use, such as:

```yaml
  Backbone:
    name: MyBackbone
    args1: args1
```

**NOTE**: More details about replace Backbone and other mudule can be found in [doc](add_new_algorithm_en.md).

140 141 142 143 144

### 2.4 Training with knowledge distillation

Knowledge distillation is supported in PaddleOCR for text detection training process. For more details, please refer to [doc](./knowledge_distillation_en.md).

145 146 147
## 3. Evaluation and Test

### 3.1 Evaluation
K
Khanh Tran 已提交
148

149
PaddleOCR calculates three indicators for evaluating performance of OCR detection task: Precision, Recall, and Hmean(F-Score).
K
Khanh Tran 已提交
150

L
LDOUBLEV 已提交
151
Run the following code to calculate the evaluation indicators. The result will be saved in the test result file specified by `save_res_path` in the configuration file `det_db_mv3.yml`
K
Khanh Tran 已提交
152

153
When evaluating, set post-processing parameters `box_thresh=0.6`, `unclip_ratio=1.5`. If you use different datasets, different models for training, these two parameters should be adjusted for better result.
K
Khanh Tran 已提交
154

L
LDOUBLEV 已提交
155
The model parameters during training are saved in the `Global.save_model_dir` directory by default. When evaluating indicators, you need to set `Global.checkpoints` to point to the saved parameter file.
L
licx 已提交
156
```shell
L
LDOUBLEV 已提交
157
python3 tools/eval.py -c configs/det/det_mv3_db.yml  -o Global.checkpoints="{path/to/weights}/best_accuracy" PostProcess.box_thresh=0.6 PostProcess.unclip_ratio=1.5
K
Khanh Tran 已提交
158 159
```

160
* Note: `box_thresh` and `unclip_ratio` are parameters required for DB post-processing, and not need to be set when evaluating the EAST and SAST model.
K
Khanh Tran 已提交
161

162
### 3.2 Test
K
Khanh Tran 已提交
163 164

Test the detection result on a single image:
165
```shell
166
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/img_10.jpg" Global.pretrained_model="./output/det_db/best_accuracy"
K
Khanh Tran 已提交
167 168 169
```

When testing the DB model, adjust the post-processing threshold:
170
```shell
171
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/img_10.jpg" Global.pretrained_model="./output/det_db/best_accuracy"  PostProcess.box_thresh=0.6 PostProcess.unclip_ratio=2.0
K
Khanh Tran 已提交
172 173 174 175
```


Test the detection result on all images in the folder:
176
```shell
177
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/" Global.pretrained_model="./output/det_db/best_accuracy"
K
Khanh Tran 已提交
178
```
179

180
## 4. Inference
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202

The inference model (the model saved by `paddle.jit.save`) is generally a solidified model saved after the model training is completed, and is mostly used to give prediction in deployment.

The model saved during the training process is the checkpoints model, which saves the parameters of the model and is mostly used to resume training.

Compared with the checkpoints model, the inference model will additionally save the structural information of the model. Therefore, it is easier to deploy because the model structure and model parameters are already solidified in the inference model file, and is suitable for integration with actual systems.

Firstly, we can convert DB trained model to inference model:
```shell
python3 tools/export_model.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model="./output/det_db/best_accuracy" Global.save_inference_dir="./output/det_db_inference/"
```

The detection inference model prediction:
```shell
python3 tools/infer/predict_det.py --det_algorithm="DB" --det_model_dir="./output/det_db_inference/" --image_dir="./doc/imgs/" --use_gpu=True
```

If it is other detection algorithms, such as the EAST, the det_algorithm parameter needs to be modified to EAST, and the default is the DB algorithm:
```shell
python3 tools/infer/predict_det.py --det_algorithm="EAST" --det_model_dir="./output/det_db_inference/" --image_dir="./doc/imgs/" --use_gpu=True
```

203
## 5. FAQ
204 205

Q1: The prediction results of trained model and inference model are inconsistent?
206

207 208 209
**A**: Most of the problems are caused by the inconsistency of the pre-processing and post-processing parameters during the prediction of the trained model and the pre-processing and post-processing parameters during the prediction of the inference model. Taking the model trained by the det_mv3_db.yml configuration file as an example, the solution to the problem of inconsistent prediction results between the training model and the inference model is as follows:
- Check whether the [trained model preprocessing](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/configs/det/det_mv3_db.yml#L116) is consistent with the prediction [preprocessing function of the inference model](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/tools/infer/predict_det.py#L42). When the algorithm is evaluated, the input image size will affect the accuracy. In order to be consistent with the paper, the image is resized to [736, 1280] in the training icdar15 configuration file, but there is only a set of default parameters when the inference model predicts, which will be considered To predict the speed problem, the longest side of the image is limited to 960 for resize by default. The preprocessing function of the training model preprocessing and the inference model is located in [ppocr/data/imaug/operators.py](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/ppocr/data/imaug/operators.py#L147)
- Check whether the [post-processing of the trained model](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/configs/det/det_mv3_db.yml#L51) is consistent with the [post-processing parameters of the inference](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/tools/infer/utility.py#L50).