train_re.py 8.4 KB
Newer Older
文幕地方's avatar
add re  
文幕地方 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))

import random
Z
zhoujun 已提交
23
import time
文幕地方's avatar
add re  
文幕地方 已提交
24 25 26 27 28 29
import numpy as np
import paddle

from paddlenlp.transformers import LayoutXLMTokenizer, LayoutXLMModel, LayoutXLMForRelationExtraction

from xfun import XFUNDataset
Z
zhoujun 已提交
30
from utils import parse_args, get_bio_label_maps, print_arguments, set_seed
文幕地方's avatar
add re  
文幕地方 已提交
31
from data_collator import DataCollator
Z
zhoujun 已提交
32
from eval_re import evaluate
文幕地方's avatar
add re  
文幕地方 已提交
33 34 35 36 37 38

from ppocr.utils.logging import get_logger


def train(args):
    logger = get_logger(log_file=os.path.join(args.output_dir, "train.log"))
文幕地方's avatar
文幕地方 已提交
39 40 41
    rank = paddle.distributed.get_rank()
    distributed = paddle.distributed.get_world_size() > 1

文幕地方's avatar
add re  
文幕地方 已提交
42 43 44 45 46 47 48 49 50
    print_arguments(args, logger)

    # Added here for reproducibility (even between python 2 and 3)
    set_seed(args.seed)

    label2id_map, id2label_map = get_bio_label_maps(args.label_map_path)
    pad_token_label_id = paddle.nn.CrossEntropyLoss().ignore_index

    # dist mode
文幕地方's avatar
文幕地方 已提交
51
    if distributed:
文幕地方's avatar
add re  
文幕地方 已提交
52 53 54
        paddle.distributed.init_parallel_env()

    tokenizer = LayoutXLMTokenizer.from_pretrained(args.model_name_or_path)
Z
zhoujun 已提交
55 56 57 58 59 60 61 62
    if not args.resume:
        model = LayoutXLMModel.from_pretrained(args.model_name_or_path)
        model = LayoutXLMForRelationExtraction(model, dropout=None)
        logger.info('train from scratch')
    else:
        logger.info('resume from {}'.format(args.model_name_or_path))
        model = LayoutXLMForRelationExtraction.from_pretrained(
            args.model_name_or_path)
文幕地方's avatar
add re  
文幕地方 已提交
63 64

    # dist mode
文幕地方's avatar
文幕地方 已提交
65 66
    if distributed:
        model = paddle.DataParallel(model)
文幕地方's avatar
add re  
文幕地方 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

    train_dataset = XFUNDataset(
        tokenizer,
        data_dir=args.train_data_dir,
        label_path=args.train_label_path,
        label2id_map=label2id_map,
        img_size=(224, 224),
        max_seq_len=args.max_seq_length,
        pad_token_label_id=pad_token_label_id,
        contains_re=True,
        add_special_ids=False,
        return_attention_mask=True,
        load_mode='all')

    eval_dataset = XFUNDataset(
        tokenizer,
        data_dir=args.eval_data_dir,
        label_path=args.eval_label_path,
        label2id_map=label2id_map,
        img_size=(224, 224),
        max_seq_len=args.max_seq_length,
        pad_token_label_id=pad_token_label_id,
        contains_re=True,
        add_special_ids=False,
        return_attention_mask=True,
        load_mode='all')

    train_sampler = paddle.io.DistributedBatchSampler(
        train_dataset, batch_size=args.per_gpu_train_batch_size, shuffle=True)
文幕地方's avatar
文幕地方 已提交
96

文幕地方's avatar
add re  
文幕地方 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
    train_dataloader = paddle.io.DataLoader(
        train_dataset,
        batch_sampler=train_sampler,
        num_workers=8,
        use_shared_memory=True,
        collate_fn=DataCollator())

    eval_dataloader = paddle.io.DataLoader(
        eval_dataset,
        batch_size=args.per_gpu_eval_batch_size,
        num_workers=8,
        shuffle=False,
        collate_fn=DataCollator())

    t_total = len(train_dataloader) * args.num_train_epochs

    # build linear decay with warmup lr sch
    lr_scheduler = paddle.optimizer.lr.PolynomialDecay(
        learning_rate=args.learning_rate,
        decay_steps=t_total,
        end_lr=0.0,
        power=1.0)
    if args.warmup_steps > 0:
        lr_scheduler = paddle.optimizer.lr.LinearWarmup(
            lr_scheduler,
            args.warmup_steps,
            start_lr=0,
            end_lr=args.learning_rate, )
    grad_clip = paddle.nn.ClipGradByNorm(clip_norm=10)
    optimizer = paddle.optimizer.Adam(
        learning_rate=args.learning_rate,
        parameters=model.parameters(),
        epsilon=args.adam_epsilon,
        grad_clip=grad_clip,
        weight_decay=args.weight_decay)

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = {}".format(len(train_dataset)))
    logger.info("  Num Epochs = {}".format(args.num_train_epochs))
    logger.info("  Instantaneous batch size per GPU = {}".format(
        args.per_gpu_train_batch_size))
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = {}".
文幕地方's avatar
文幕地方 已提交
141 142
        format(args.per_gpu_train_batch_size *
               paddle.distributed.get_world_size()))
文幕地方's avatar
add re  
文幕地方 已提交
143 144 145 146 147 148 149 150
    logger.info("  Total optimization steps = {}".format(t_total))

    global_step = 0
    model.clear_gradients()
    train_dataloader_len = len(train_dataloader)
    best_metirc = {'f1': 0}
    model.train()

Z
zhoujun 已提交
151 152 153 154 155 156 157
    train_reader_cost = 0.0
    train_run_cost = 0.0
    total_samples = 0
    reader_start = time.time()

    print_step = 1

文幕地方's avatar
add re  
文幕地方 已提交
158 159
    for epoch in range(int(args.num_train_epochs)):
        for step, batch in enumerate(train_dataloader):
Z
zhoujun 已提交
160 161
            train_reader_cost += time.time() - reader_start
            train_start = time.time()
文幕地方's avatar
add re  
文幕地方 已提交
162
            outputs = model(**batch)
Z
zhoujun 已提交
163
            train_run_cost += time.time() - train_start
文幕地方's avatar
add re  
文幕地方 已提交
164 165 166 167 168 169 170 171 172 173
            # model outputs are always tuple in ppnlp (see doc)
            loss = outputs['loss']
            loss = loss.mean()

            loss.backward()
            optimizer.step()
            optimizer.clear_grad()
            # lr_scheduler.step()  # Update learning rate schedule

            global_step += 1
Z
zhoujun 已提交
174 175
            total_samples += batch['image'].shape[0]

文幕地方's avatar
文幕地方 已提交
176
            if rank == 0 and step % print_step == 0:
Z
zhoujun 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189
                logger.info(
                    "epoch: [{}/{}], iter: [{}/{}], global_step:{}, train loss: {:.6f}, lr: {:.6f}, avg_reader_cost: {:.5f} sec, avg_batch_cost: {:.5f} sec, avg_samples: {:.5f}, ips: {:.5f} images/sec".
                    format(epoch, args.num_train_epochs, step,
                           train_dataloader_len, global_step,
                           np.mean(loss.numpy()),
                           optimizer.get_lr(), train_reader_cost / print_step, (
                               train_reader_cost + train_run_cost) / print_step,
                           total_samples / print_step, total_samples / (
                               train_reader_cost + train_run_cost)))

                train_reader_cost = 0.0
                train_run_cost = 0.0
                total_samples = 0
文幕地方's avatar
add re  
文幕地方 已提交
190

文幕地方's avatar
文幕地方 已提交
191
            if rank == 0 and args.eval_steps > 0 and global_step % args.eval_steps == 0 and args.evaluate_during_training:
文幕地方's avatar
add re  
文幕地方 已提交
192
                # Log metrics
文幕地方's avatar
文幕地方 已提交
193 194 195 196 197 198 199 200 201
                # Only evaluate when single GPU otherwise metrics may not average well
                results = evaluate(model, eval_dataloader, logger)
                if results['f1'] >= best_metirc['f1']:
                    best_metirc = results
                    output_dir = os.path.join(args.output_dir, "best_model")
                    os.makedirs(output_dir, exist_ok=True)
                    if distributed:
                        model._layers.save_pretrained(output_dir)
                    else:
文幕地方's avatar
add re  
文幕地方 已提交
202 203 204 205 206 207
                        model.save_pretrained(output_dir)
                    tokenizer.save_pretrained(output_dir)
                    paddle.save(args,
                                os.path.join(output_dir, "training_args.bin"))
                    logger.info("Saving model checkpoint to {}".format(
                        output_dir))
文幕地方's avatar
文幕地方 已提交
208 209
                logger.info("eval results: {}".format(results))
                logger.info("best_metirc: {}".format(best_metirc))
Z
zhoujun 已提交
210
            reader_start = time.time()
文幕地方's avatar
文幕地方 已提交
211 212 213 214 215 216 217 218 219 220 221 222

        if rank == 0:
            # Save model checkpoint
            output_dir = os.path.join(args.output_dir, "latest_model")
            os.makedirs(output_dir, exist_ok=True)
            if distributed:
                model._layers.save_pretrained(output_dir)
            else:
                model.save_pretrained(output_dir)
            tokenizer.save_pretrained(output_dir)
            paddle.save(args, os.path.join(output_dir, "training_args.bin"))
            logger.info("Saving model checkpoint to {}".format(output_dir))
文幕地方's avatar
add re  
文幕地方 已提交
223 224 225 226 227 228 229
    logger.info("best_metirc: {}".format(best_metirc))


if __name__ == "__main__":
    args = parse_args()
    os.makedirs(args.output_dir, exist_ok=True)
    train(args)