label_ops.py 39.2 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

20
import copy
W
WenmuZhou 已提交
21
import numpy as np
T
tink2123 已提交
22
import string
L
add kie  
LDOUBLEV 已提交
23
from shapely.geometry import LineString, Point, Polygon
L
LDOUBLEV 已提交
24
import json
A
andyjpaddle 已提交
25
import copy
T
tink2123 已提交
26 27
from ppocr.utils.logging import get_logger

W
WenmuZhou 已提交
28 29 30 31 32 33 34 35 36 37 38 39

class ClsLabelEncode(object):
    def __init__(self, label_list, **kwargs):
        self.label_list = label_list

    def __call__(self, data):
        label = data['label']
        if label not in self.label_list:
            return None
        label = self.label_list.index(label)
        data['label'] = label
        return data
W
WenmuZhou 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59


class DetLabelEncode(object):
    def __init__(self, **kwargs):
        pass

    def __call__(self, data):
        label = data['label']
        label = json.loads(label)
        nBox = len(label)
        boxes, txts, txt_tags = [], [], []
        for bno in range(0, nBox):
            box = label[bno]['points']
            txt = label[bno]['transcription']
            boxes.append(box)
            txts.append(txt)
            if txt in ['*', '###']:
                txt_tags.append(True)
            else:
                txt_tags.append(False)
L
LDOUBLEV 已提交
60 61
        if len(boxes) == 0:
            return None
M
MissPenguin 已提交
62
        boxes = self.expand_points_num(boxes)
W
WenmuZhou 已提交
63 64 65 66 67 68 69 70 71
        boxes = np.array(boxes, dtype=np.float32)
        txt_tags = np.array(txt_tags, dtype=np.bool)

        data['polys'] = boxes
        data['texts'] = txts
        data['ignore_tags'] = txt_tags
        return data

    def order_points_clockwise(self, pts):
L
fix  
LDOUBLEV 已提交
72 73 74 75 76 77 78 79 80
        rect = np.zeros((4, 2), dtype="float32")
        s = pts.sum(axis=1)
        rect[0] = pts[np.argmin(s)]
        rect[2] = pts[np.argmax(s)]
        tmp = np.delete(pts, (np.argmin(s), np.argmax(s)), axis=0)
        diff = np.diff(np.array(tmp), axis=1)
        rect[1] = tmp[np.argmin(diff)]
        rect[3] = tmp[np.argmax(diff)]
        return rect
W
WenmuZhou 已提交
81

M
MissPenguin 已提交
82 83 84 85 86 87 88 89 90 91 92
    def expand_points_num(self, boxes):
        max_points_num = 0
        for box in boxes:
            if len(box) > max_points_num:
                max_points_num = len(box)
        ex_boxes = []
        for box in boxes:
            ex_box = box + [box[-1]] * (max_points_num - len(box))
            ex_boxes.append(ex_box)
        return ex_boxes

W
WenmuZhou 已提交
93 94 95 96 97 98 99 100 101 102

class BaseRecLabelEncode(object):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False):

        self.max_text_len = max_text_length
T
tink2123 已提交
103 104
        self.beg_str = "sos"
        self.end_str = "eos"
T
tink2123 已提交
105
        self.lower = False
T
tink2123 已提交
106 107 108 109 110 111

        if character_dict_path is None:
            logger = get_logger()
            logger.warning(
                "The character_dict_path is None, model can only recognize number and lower letters"
            )
W
WenmuZhou 已提交
112 113
            self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
            dict_character = list(self.character_str)
T
tink2123 已提交
114 115
            self.lower = True
        else:
116
            self.character_str = []
W
WenmuZhou 已提交
117 118 119 120
            with open(character_dict_path, "rb") as fin:
                lines = fin.readlines()
                for line in lines:
                    line = line.decode('utf-8').strip("\n").strip("\r\n")
121
                    self.character_str.append(line)
W
WenmuZhou 已提交
122
            if use_space_char:
123
                self.character_str.append(" ")
W
WenmuZhou 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
            dict_character = list(self.character_str)
        dict_character = self.add_special_char(dict_character)
        self.dict = {}
        for i, char in enumerate(dict_character):
            self.dict[char] = i
        self.character = dict_character

    def add_special_char(self, dict_character):
        return dict_character

    def encode(self, text):
        """convert text-label into text-index.
        input:
            text: text labels of each image. [batch_size]

        output:
            text: concatenated text index for CTCLoss.
                    [sum(text_lengths)] = [text_index_0 + text_index_1 + ... + text_index_(n - 1)]
            length: length of each text. [batch_size]
        """
W
WenmuZhou 已提交
144
        if len(text) == 0 or len(text) > self.max_text_len:
W
WenmuZhou 已提交
145
            return None
T
tink2123 已提交
146
        if self.lower:
W
WenmuZhou 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
            text = text.lower()
        text_list = []
        for char in text:
            if char not in self.dict:
                # logger = get_logger()
                # logger.warning('{} is not in dict'.format(char))
                continue
            text_list.append(self.dict[char])
        if len(text_list) == 0:
            return None
        return text_list


class CTCLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
T
tink2123 已提交
168 169
        super(CTCLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
W
WenmuZhou 已提交
170 171 172 173 174 175 176 177 178

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
        data['length'] = np.array(len(text))
        text = text + [0] * (self.max_text_len - len(text))
        data['label'] = np.array(text)
179 180 181 182 183

        label = [0] * len(self.character)
        for x in text:
            label[x] += 1
        data['label_ace'] = np.array(label)
W
WenmuZhou 已提交
184 185 186 187 188 189 190
        return data

    def add_special_char(self, dict_character):
        dict_character = ['blank'] + dict_character
        return dict_character


J
Jethong 已提交
191
class E2ELabelEncodeTest(BaseRecLabelEncode):
J
Jethong 已提交
192 193 194 195 196
    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
T
tink2123 已提交
197 198
        super(E2ELabelEncodeTest, self).__init__(
            max_text_length, character_dict_path, use_space_char)
J
Jethong 已提交
199 200

    def __call__(self, data):
J
Jethong 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
        import json
        padnum = len(self.dict)
        label = data['label']
        label = json.loads(label)
        nBox = len(label)
        boxes, txts, txt_tags = [], [], []
        for bno in range(0, nBox):
            box = label[bno]['points']
            txt = label[bno]['transcription']
            boxes.append(box)
            txts.append(txt)
            if txt in ['*', '###']:
                txt_tags.append(True)
            else:
                txt_tags.append(False)
        boxes = np.array(boxes, dtype=np.float32)
        txt_tags = np.array(txt_tags, dtype=np.bool)
        data['polys'] = boxes
J
Jethong 已提交
219
        data['ignore_tags'] = txt_tags
J
Jethong 已提交
220
        temp_texts = []
J
Jethong 已提交
221
        for text in txts:
J
Jethong 已提交
222
            text = text.lower()
J
Jethong 已提交
223 224 225
            text = self.encode(text)
            if text is None:
                return None
J
Jethong 已提交
226 227
            text = text + [padnum] * (self.max_text_len - len(text)
                                      )  # use 36 to pad
J
Jethong 已提交
228 229 230 231 232
            temp_texts.append(text)
        data['texts'] = np.array(temp_texts)
        return data


J
Jethong 已提交
233
class E2ELabelEncodeTrain(object):
J
Jethong 已提交
234 235
    def __init__(self, **kwargs):
        pass
J
Jethong 已提交
236 237

    def __call__(self, data):
J
Jethong 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
        import json
        label = data['label']
        label = json.loads(label)
        nBox = len(label)
        boxes, txts, txt_tags = [], [], []
        for bno in range(0, nBox):
            box = label[bno]['points']
            txt = label[bno]['transcription']
            boxes.append(box)
            txts.append(txt)
            if txt in ['*', '###']:
                txt_tags.append(True)
            else:
                txt_tags.append(False)
        boxes = np.array(boxes, dtype=np.float32)
        txt_tags = np.array(txt_tags, dtype=np.bool)

        data['polys'] = boxes
        data['texts'] = txts
J
Jethong 已提交
257
        data['ignore_tags'] = txt_tags
J
Jethong 已提交
258 259 260
        return data


L
add kie  
LDOUBLEV 已提交
261
class KieLabelEncode(object):
262 263 264 265 266 267
    def __init__(self,
                 character_dict_path,
                 class_path,
                 norm=10,
                 directed=False,
                 **kwargs):
L
add kie  
LDOUBLEV 已提交
268 269
        super(KieLabelEncode, self).__init__()
        self.dict = dict({'': 0})
270
        self.label2classid_map = dict()
L
fix win  
LDOUBLEV 已提交
271
        with open(character_dict_path, 'r', encoding='utf-8') as fr:
L
add kie  
LDOUBLEV 已提交
272 273 274 275 276
            idx = 1
            for line in fr:
                char = line.strip()
                self.dict[char] = idx
                idx += 1
277 278 279 280 281
        with open(class_path, "r") as fin:
            lines = fin.readlines()
            for idx, line in enumerate(lines):
                line = line.strip("\n")
                self.label2classid_map[line] = idx
L
add kie  
LDOUBLEV 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
        self.norm = norm
        self.directed = directed

    def compute_relation(self, boxes):
        """Compute relation between every two boxes."""
        x1s, y1s = boxes[:, 0:1], boxes[:, 1:2]
        x2s, y2s = boxes[:, 4:5], boxes[:, 5:6]
        ws, hs = x2s - x1s + 1, np.maximum(y2s - y1s + 1, 1)
        dxs = (x1s[:, 0][None] - x1s) / self.norm
        dys = (y1s[:, 0][None] - y1s) / self.norm
        xhhs, xwhs = hs[:, 0][None] / hs, ws[:, 0][None] / hs
        whs = ws / hs + np.zeros_like(xhhs)
        relations = np.stack([dxs, dys, whs, xhhs, xwhs], -1)
        bboxes = np.concatenate([x1s, y1s, x2s, y2s], -1).astype(np.float32)
        return relations, bboxes

    def pad_text_indices(self, text_inds):
        """Pad text index to same length."""
L
debug  
LDOUBLEV 已提交
300
        max_len = 300
L
add kie  
LDOUBLEV 已提交
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
        recoder_len = max([len(text_ind) for text_ind in text_inds])
        padded_text_inds = -np.ones((len(text_inds), max_len), np.int32)
        for idx, text_ind in enumerate(text_inds):
            padded_text_inds[idx, :len(text_ind)] = np.array(text_ind)
        return padded_text_inds, recoder_len

    def list_to_numpy(self, ann_infos):
        """Convert bboxes, relations, texts and labels to ndarray."""
        boxes, text_inds = ann_infos['points'], ann_infos['text_inds']
        boxes = np.array(boxes, np.int32)
        relations, bboxes = self.compute_relation(boxes)

        labels = ann_infos.get('labels', None)
        if labels is not None:
            labels = np.array(labels, np.int32)
            edges = ann_infos.get('edges', None)
            if edges is not None:
                labels = labels[:, None]
                edges = np.array(edges)
                edges = (edges[:, None] == edges[None, :]).astype(np.int32)
                if self.directed:
                    edges = (edges & labels == 1).astype(np.int32)
                np.fill_diagonal(edges, -1)
                labels = np.concatenate([labels, edges], -1)
        padded_text_inds, recoder_len = self.pad_text_indices(text_inds)
L
debug  
LDOUBLEV 已提交
326
        max_num = 300
L
add kie  
LDOUBLEV 已提交
327 328
        temp_bboxes = np.zeros([max_num, 4])
        h, _ = bboxes.shape
那珈落's avatar
那珈落 已提交
329
        temp_bboxes[:h, :] = bboxes
L
add kie  
LDOUBLEV 已提交
330 331 332 333

        temp_relations = np.zeros([max_num, max_num, 5])
        temp_relations[:h, :h, :] = relations

L
debug  
LDOUBLEV 已提交
334
        temp_padded_text_inds = np.zeros([max_num, max_num])
L
add kie  
LDOUBLEV 已提交
335 336
        temp_padded_text_inds[:h, :] = padded_text_inds

L
debug  
LDOUBLEV 已提交
337
        temp_labels = np.zeros([max_num, max_num])
L
add kie  
LDOUBLEV 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
        temp_labels[:h, :h + 1] = labels

        tag = np.array([h, recoder_len])
        return dict(
            image=ann_infos['image'],
            points=temp_bboxes,
            relations=temp_relations,
            texts=temp_padded_text_inds,
            labels=temp_labels,
            tag=tag)

    def convert_canonical(self, points_x, points_y):

        assert len(points_x) == 4
        assert len(points_y) == 4

        points = [Point(points_x[i], points_y[i]) for i in range(4)]

        polygon = Polygon([(p.x, p.y) for p in points])
        min_x, min_y, _, _ = polygon.bounds
        points_to_lefttop = [
            LineString([points[i], Point(min_x, min_y)]) for i in range(4)
        ]
        distances = np.array([line.length for line in points_to_lefttop])
        sort_dist_idx = np.argsort(distances)
        lefttop_idx = sort_dist_idx[0]

        if lefttop_idx == 0:
            point_orders = [0, 1, 2, 3]
        elif lefttop_idx == 1:
            point_orders = [1, 2, 3, 0]
        elif lefttop_idx == 2:
            point_orders = [2, 3, 0, 1]
        else:
            point_orders = [3, 0, 1, 2]

        sorted_points_x = [points_x[i] for i in point_orders]
        sorted_points_y = [points_y[j] for j in point_orders]

        return sorted_points_x, sorted_points_y

    def sort_vertex(self, points_x, points_y):

        assert len(points_x) == 4
        assert len(points_y) == 4

        x = np.array(points_x)
        y = np.array(points_y)
        center_x = np.sum(x) * 0.25
        center_y = np.sum(y) * 0.25

        x_arr = np.array(x - center_x)
        y_arr = np.array(y - center_y)

        angle = np.arctan2(y_arr, x_arr) * 180.0 / np.pi
        sort_idx = np.argsort(angle)

        sorted_points_x, sorted_points_y = [], []
        for i in range(4):
            sorted_points_x.append(points_x[sort_idx[i]])
            sorted_points_y.append(points_y[sort_idx[i]])

        return self.convert_canonical(sorted_points_x, sorted_points_y)

    def __call__(self, data):
        import json
        label = data['label']
        annotations = json.loads(label)
        boxes, texts, text_inds, labels, edges = [], [], [], [], []
        for ann in annotations:
            box = ann['points']
            x_list = [box[i][0] for i in range(4)]
            y_list = [box[i][1] for i in range(4)]
            sorted_x_list, sorted_y_list = self.sort_vertex(x_list, y_list)
            sorted_box = []
            for x, y in zip(sorted_x_list, sorted_y_list):
                sorted_box.append(x)
                sorted_box.append(y)
            boxes.append(sorted_box)
            text = ann['transcription']
            texts.append(ann['transcription'])
            text_ind = [self.dict[c] for c in text if c in self.dict]
            text_inds.append(text_ind)
L
fix  
LDOUBLEV 已提交
421
            if 'label' in ann.keys():
422
                labels.append(self.label2classid_map[ann['label']])
L
fix  
LDOUBLEV 已提交
423 424
            elif 'key_cls' in ann.keys():
                labels.append(ann['key_cls'])
L
fix  
LDOUBLEV 已提交
425
            else:
L
LDOUBLEV 已提交
426 427 428
                raise ValueError(
                    "Cannot found 'key_cls' in ann.keys(), please check your training annotation."
                )
L
add kie  
LDOUBLEV 已提交
429 430 431 432 433 434 435 436 437 438 439 440
            edges.append(ann.get('edge', 0))
        ann_infos = dict(
            image=data['image'],
            points=boxes,
            texts=texts,
            text_inds=text_inds,
            edges=edges,
            labels=labels)

        return self.list_to_numpy(ann_infos)


W
WenmuZhou 已提交
441 442 443 444 445 446 447 448
class AttnLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
T
tink2123 已提交
449 450
        super(AttnLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
W
WenmuZhou 已提交
451 452

    def add_special_char(self, dict_character):
L
LDOUBLEV 已提交
453 454 455
        self.beg_str = "sos"
        self.end_str = "eos"
        dict_character = [self.beg_str] + dict_character + [self.end_str]
W
WenmuZhou 已提交
456 457
        return dict_character

L
LDOUBLEV 已提交
458 459
    def __call__(self, data):
        text = data['label']
W
WenmuZhou 已提交
460
        text = self.encode(text)
L
LDOUBLEV 已提交
461 462
        if text is None:
            return None
L
LDOUBLEV 已提交
463
        if len(text) >= self.max_text_len:
L
LDOUBLEV 已提交
464 465 466
            return None
        data['length'] = np.array(len(text))
        text = [0] + text + [len(self.character) - 1] + [0] * (self.max_text_len
T
tink2123 已提交
467
                                                               - len(text) - 2)
L
LDOUBLEV 已提交
468 469 470 471 472 473 474
        data['label'] = np.array(text)
        return data

    def get_ignored_tokens(self):
        beg_idx = self.get_beg_end_flag_idx("beg")
        end_idx = self.get_beg_end_flag_idx("end")
        return [beg_idx, end_idx]
W
WenmuZhou 已提交
475 476 477 478 479 480 481 482 483 484

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "beg":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "end":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "Unsupport type %s in get_beg_end_flag_idx" \
                          % beg_or_end
        return idx
T
tink2123 已提交
485 486


T
tink2123 已提交
487 488 489 490 491 492 493 494
class SEEDLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
T
tink2123 已提交
495 496
        super(SEEDLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
T
tink2123 已提交
497 498

    def add_special_char(self, dict_character):
T
tink2123 已提交
499
        self.padding = "padding"
T
tink2123 已提交
500
        self.end_str = "eos"
T
tink2123 已提交
501 502 503 504
        self.unknown = "unknown"
        dict_character = dict_character + [
            self.end_str, self.padding, self.unknown
        ]
T
tink2123 已提交
505 506 507 508 509 510 511 512 513
        return dict_character

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
        if len(text) >= self.max_text_len:
            return None
T
rm anno  
tink2123 已提交
514
        data['length'] = np.array(len(text)) + 1  # conclude eos
T
tink2123 已提交
515 516
        text = text + [len(self.character) - 3] + [len(self.character) - 2] * (
            self.max_text_len - len(text) - 1)
T
tink2123 已提交
517 518 519 520
        data['label'] = np.array(text)
        return data


T
tink2123 已提交
521 522 523 524 525 526 527 528
class SRNLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length=25,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
T
tink2123 已提交
529 530
        super(SRNLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
T
tink2123 已提交
531 532 533 534 535 536 537 538

    def add_special_char(self, dict_character):
        dict_character = dict_character + [self.beg_str, self.end_str]
        return dict_character

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
T
tink2123 已提交
539
        char_num = len(self.character)
T
tink2123 已提交
540 541 542 543 544
        if text is None:
            return None
        if len(text) > self.max_text_len:
            return None
        data['length'] = np.array(len(text))
T
tink2123 已提交
545
        text = text + [char_num - 1] * (self.max_text_len - len(text))
T
tink2123 已提交
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
        data['label'] = np.array(text)
        return data

    def get_ignored_tokens(self):
        beg_idx = self.get_beg_end_flag_idx("beg")
        end_idx = self.get_beg_end_flag_idx("end")
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "beg":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "end":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "Unsupport type %s in get_beg_end_flag_idx" \
                          % beg_or_end
        return idx
M
MissPenguin 已提交
563

L
LDOUBLEV 已提交
564

M
MissPenguin 已提交
565 566
class TableLabelEncode(object):
    """ Convert between text-label and text-index """
L
LDOUBLEV 已提交
567 568 569 570 571 572 573 574

    def __init__(self,
                 max_text_length,
                 max_elem_length,
                 max_cell_num,
                 character_dict_path,
                 span_weight=1.0,
                 **kwargs):
M
MissPenguin 已提交
575 576 577
        self.max_text_length = max_text_length
        self.max_elem_length = max_elem_length
        self.max_cell_num = max_cell_num
L
LDOUBLEV 已提交
578 579
        list_character, list_elem = self.load_char_elem_dict(
            character_dict_path)
M
MissPenguin 已提交
580 581 582 583 584 585 586 587 588
        list_character = self.add_special_char(list_character)
        list_elem = self.add_special_char(list_elem)
        self.dict_character = {}
        for i, char in enumerate(list_character):
            self.dict_character[char] = i
        self.dict_elem = {}
        for i, elem in enumerate(list_elem):
            self.dict_elem[elem] = i
        self.span_weight = span_weight
L
LDOUBLEV 已提交
589

M
MissPenguin 已提交
590 591 592 593 594
    def load_char_elem_dict(self, character_dict_path):
        list_character = []
        list_elem = []
        with open(character_dict_path, "rb") as fin:
            lines = fin.readlines()
W
WenmuZhou 已提交
595
            substr = lines[0].decode('utf-8').strip("\r\n").split("\t")
M
MissPenguin 已提交
596 597
            character_num = int(substr[0])
            elem_num = int(substr[1])
L
LDOUBLEV 已提交
598
            for cno in range(1, 1 + character_num):
W
WenmuZhou 已提交
599
                character = lines[cno].decode('utf-8').strip("\r\n")
M
MissPenguin 已提交
600
                list_character.append(character)
L
LDOUBLEV 已提交
601
            for eno in range(1 + character_num, 1 + character_num + elem_num):
W
WenmuZhou 已提交
602
                elem = lines[eno].decode('utf-8').strip("\r\n")
M
MissPenguin 已提交
603 604
                list_elem.append(elem)
        return list_character, list_elem
L
LDOUBLEV 已提交
605

M
MissPenguin 已提交
606 607 608 609 610
    def add_special_char(self, list_character):
        self.beg_str = "sos"
        self.end_str = "eos"
        list_character = [self.beg_str] + list_character + [self.end_str]
        return list_character
L
LDOUBLEV 已提交
611

M
MissPenguin 已提交
612 613 614 615 616 617
    def get_span_idx_list(self):
        span_idx_list = []
        for elem in self.dict_elem:
            if 'span' in elem:
                span_idx_list.append(self.dict_elem[elem])
        return span_idx_list
L
LDOUBLEV 已提交
618

M
MissPenguin 已提交
619 620 621 622 623 624 625 626
    def __call__(self, data):
        cells = data['cells']
        structure = data['structure']['tokens']
        structure = self.encode(structure, 'elem')
        if structure is None:
            return None
        elem_num = len(structure)
        structure = [0] + structure + [len(self.dict_elem) - 1]
L
LDOUBLEV 已提交
627 628
        structure = structure + [0] * (self.max_elem_length + 2 - len(structure)
                                       )
M
MissPenguin 已提交
629 630 631 632 633
        structure = np.array(structure)
        data['structure'] = structure
        elem_char_idx1 = self.dict_elem['<td>']
        elem_char_idx2 = self.dict_elem['<td']
        span_idx_list = self.get_span_idx_list()
L
LDOUBLEV 已提交
634 635
        td_idx_list = np.logical_or(structure == elem_char_idx1,
                                    structure == elem_char_idx2)
M
MissPenguin 已提交
636
        td_idx_list = np.where(td_idx_list)[0]
L
LDOUBLEV 已提交
637 638 639

        structure_mask = np.ones(
            (self.max_elem_length + 2, 1), dtype=np.float32)
M
MissPenguin 已提交
640
        bbox_list = np.zeros((self.max_elem_length + 2, 4), dtype=np.float32)
L
LDOUBLEV 已提交
641 642
        bbox_list_mask = np.zeros(
            (self.max_elem_length + 2, 1), dtype=np.float32)
M
MissPenguin 已提交
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
        img_height, img_width, img_ch = data['image'].shape
        if len(span_idx_list) > 0:
            span_weight = len(td_idx_list) * 1.0 / len(span_idx_list)
            span_weight = min(max(span_weight, 1.0), self.span_weight)
        for cno in range(len(cells)):
            if 'bbox' in cells[cno]:
                bbox = cells[cno]['bbox'].copy()
                bbox[0] = bbox[0] * 1.0 / img_width
                bbox[1] = bbox[1] * 1.0 / img_height
                bbox[2] = bbox[2] * 1.0 / img_width
                bbox[3] = bbox[3] * 1.0 / img_height
                td_idx = td_idx_list[cno]
                bbox_list[td_idx] = bbox
                bbox_list_mask[td_idx] = 1.0
                cand_span_idx = td_idx + 1
                if cand_span_idx < (self.max_elem_length + 2):
                    if structure[cand_span_idx] in span_idx_list:
                        structure_mask[cand_span_idx] = span_weight

        data['bbox_list'] = bbox_list
        data['bbox_list_mask'] = bbox_list_mask
        data['structure_mask'] = structure_mask
        char_beg_idx = self.get_beg_end_flag_idx('beg', 'char')
        char_end_idx = self.get_beg_end_flag_idx('end', 'char')
        elem_beg_idx = self.get_beg_end_flag_idx('beg', 'elem')
        elem_end_idx = self.get_beg_end_flag_idx('end', 'elem')
L
LDOUBLEV 已提交
669 670 671 672 673
        data['sp_tokens'] = np.array([
            char_beg_idx, char_end_idx, elem_beg_idx, elem_end_idx,
            elem_char_idx1, elem_char_idx2, self.max_text_length,
            self.max_elem_length, self.max_cell_num, elem_num
        ])
M
MissPenguin 已提交
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
        return data

    def encode(self, text, char_or_elem):
        """convert text-label into text-index.
        """
        if char_or_elem == "char":
            max_len = self.max_text_length
            current_dict = self.dict_character
        else:
            max_len = self.max_elem_length
            current_dict = self.dict_elem
        if len(text) > max_len:
            return None
        if len(text) == 0:
            if char_or_elem == "char":
                return [self.dict_character['space']]
            else:
                return None
        text_list = []
        for char in text:
            if char not in current_dict:
                return None
            text_list.append(current_dict[char])
        if len(text_list) == 0:
            if char_or_elem == "char":
                return [self.dict_character['space']]
            else:
                return None
        return text_list

    def get_ignored_tokens(self, char_or_elem):
        beg_idx = self.get_beg_end_flag_idx("beg", char_or_elem)
        end_idx = self.get_beg_end_flag_idx("end", char_or_elem)
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end, char_or_elem):
        if char_or_elem == "char":
            if beg_or_end == "beg":
                idx = np.array(self.dict_character[self.beg_str])
            elif beg_or_end == "end":
                idx = np.array(self.dict_character[self.end_str])
            else:
                assert False, "Unsupport type %s in get_beg_end_flag_idx of char" \
                              % beg_or_end
        elif char_or_elem == "elem":
            if beg_or_end == "beg":
                idx = np.array(self.dict_elem[self.beg_str])
            elif beg_or_end == "end":
                idx = np.array(self.dict_elem[self.end_str])
            else:
                assert False, "Unsupport type %s in get_beg_end_flag_idx of elem" \
L
LDOUBLEV 已提交
725
                              % beg_or_end
M
MissPenguin 已提交
726 727
        else:
            assert False, "Unsupport type %s in char_or_elem" \
728
                % char_or_elem
M
MissPenguin 已提交
729
        return idx
A
andyjpaddle 已提交
730 731 732 733 734 735 736 737 738 739


class SARLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
T
tink2123 已提交
740 741
        super(SARLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
A
andyjpaddle 已提交
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766

    def add_special_char(self, dict_character):
        beg_end_str = "<BOS/EOS>"
        unknown_str = "<UKN>"
        padding_str = "<PAD>"
        dict_character = dict_character + [unknown_str]
        self.unknown_idx = len(dict_character) - 1
        dict_character = dict_character + [beg_end_str]
        self.start_idx = len(dict_character) - 1
        self.end_idx = len(dict_character) - 1
        dict_character = dict_character + [padding_str]
        self.padding_idx = len(dict_character) - 1

        return dict_character

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
        if len(text) >= self.max_text_len - 1:
            return None
        data['length'] = np.array(len(text))
        target = [self.start_idx] + text + [self.end_idx]
        padded_text = [self.padding_idx for _ in range(self.max_text_len)]
T
tink2123 已提交
767

A
andyjpaddle 已提交
768 769 770 771 772 773
        padded_text[:len(target)] = target
        data['label'] = np.array(padded_text)
        return data

    def get_ignored_tokens(self):
        return [self.padding_idx]
774 775


776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
class PRENLabelEncode(BaseRecLabelEncode):
    def __init__(self,
                 max_text_length,
                 character_dict_path,
                 use_space_char=False,
                 **kwargs):
        super(PRENLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)

    def add_special_char(self, dict_character):
        padding_str = '<PAD>'  # 0 
        end_str = '<EOS>'  # 1
        unknown_str = '<UNK>'  # 2

        dict_character = [padding_str, end_str, unknown_str] + dict_character
        self.padding_idx = 0
        self.end_idx = 1
        self.unknown_idx = 2

        return dict_character

    def encode(self, text):
        if len(text) == 0 or len(text) >= self.max_text_len:
            return None
        if self.lower:
            text = text.lower()
        text_list = []
        for char in text:
            if char not in self.dict:
                text_list.append(self.unknown_idx)
            else:
                text_list.append(self.dict[char])
        text_list.append(self.end_idx)
        if len(text_list) < self.max_text_len:
            text_list += [self.padding_idx] * (
                self.max_text_len - len(text_list))
        return text_list

    def __call__(self, data):
        text = data['label']
        encoded_text = self.encode(text)
        if encoded_text is None:
            return None
        data['label'] = np.array(encoded_text)
        return data


823 824
class VQATokenLabelEncode(object):
    """
文幕地方's avatar
文幕地方 已提交
825
    Label encode for NLP VQA methods
826 827 828 829 830 831 832 833 834 835 836
    """

    def __init__(self,
                 class_path,
                 contains_re=False,
                 add_special_ids=False,
                 algorithm='LayoutXLM',
                 infer_mode=False,
                 ocr_engine=None,
                 **kwargs):
        super(VQATokenLabelEncode, self).__init__()
文幕地方's avatar
文幕地方 已提交
837
        from paddlenlp.transformers import LayoutXLMTokenizer, LayoutLMTokenizer, LayoutLMv2Tokenizer
838 839 840 841 842 843 844 845 846
        from ppocr.utils.utility import load_vqa_bio_label_maps
        tokenizer_dict = {
            'LayoutXLM': {
                'class': LayoutXLMTokenizer,
                'pretrained_model': 'layoutxlm-base-uncased'
            },
            'LayoutLM': {
                'class': LayoutLMTokenizer,
                'pretrained_model': 'layoutlm-base-uncased'
文幕地方's avatar
文幕地方 已提交
847 848 849 850
            },
            'LayoutLMv2': {
                'class': LayoutLMv2Tokenizer,
                'pretrained_model': 'layoutlmv2-base-uncased'
851 852 853 854 855 856 857 858 859 860 861 862
            }
        }
        self.contains_re = contains_re
        tokenizer_config = tokenizer_dict[algorithm]
        self.tokenizer = tokenizer_config['class'].from_pretrained(
            tokenizer_config['pretrained_model'])
        self.label2id_map, id2label_map = load_vqa_bio_label_maps(class_path)
        self.add_special_ids = add_special_ids
        self.infer_mode = infer_mode
        self.ocr_engine = ocr_engine

    def __call__(self, data):
文幕地方's avatar
文幕地方 已提交
863 864
        # load bbox and label info
        ocr_info = self._load_ocr_info(data)
865

文幕地方's avatar
文幕地方 已提交
866
        height, width, _ = data['image'].shape
867 868 869 870 871

        words_list = []
        bbox_list = []
        input_ids_list = []
        token_type_ids_list = []
文幕地方's avatar
文幕地方 已提交
872
        segment_offset_id = []
873 874
        gt_label_list = []

文幕地方's avatar
文幕地方 已提交
875 876 877 878 879 880 881 882 883
        entities = []

        # for re
        train_re = self.contains_re and not self.infer_mode
        if train_re:
            relations = []
            id2label = {}
            entity_id_to_index_map = {}
            empty_entity = set()
文幕地方's avatar
文幕地方 已提交
884 885 886 887

        data['ocr_info'] = copy.deepcopy(ocr_info)

        for info in ocr_info:
文幕地方's avatar
文幕地方 已提交
888
            if train_re:
889
                # for re
890
                if len(info["transcription"]) == 0:
891 892 893 894
                    empty_entity.add(info["id"])
                    continue
                id2label[info["id"]] = info["label"]
                relations.extend([tuple(sorted(l)) for l in info["linking"]])
文幕地方's avatar
文幕地方 已提交
895
            # smooth_box
896
            info["bbox"] = self.trans_poly_to_bbox(info["points"])
文幕地方's avatar
文幕地方 已提交
897
            bbox = self._smooth_box(info["bbox"], height, width)
898

899
            text = info["transcription"]
900 901 902 903 904 905 906 907 908 909
            encode_res = self.tokenizer.encode(
                text, pad_to_max_seq_len=False, return_attention_mask=True)

            if not self.add_special_ids:
                # TODO: use tok.all_special_ids to remove
                encode_res["input_ids"] = encode_res["input_ids"][1:-1]
                encode_res["token_type_ids"] = encode_res["token_type_ids"][1:
                                                                            -1]
                encode_res["attention_mask"] = encode_res["attention_mask"][1:
                                                                            -1]
文幕地方's avatar
文幕地方 已提交
910 911 912 913 914
            # parse label
            if not self.infer_mode:
                label = info['label']
                gt_label = self._parse_label(label, encode_res)

915
            # construct entities for re
文幕地方's avatar
文幕地方 已提交
916 917 918 919
            if train_re:
                if gt_label[0] != self.label2id_map["O"]:
                    entity_id_to_index_map[info["id"]] = len(entities)
                    label = label.upper()
920 921 922 923
                    entities.append({
                        "start": len(input_ids_list),
                        "end":
                        len(input_ids_list) + len(encode_res["input_ids"]),
文幕地方's avatar
文幕地方 已提交
924
                        "label": label.upper(),
925
                    })
文幕地方's avatar
文幕地方 已提交
926 927 928 929 930 931
            else:
                entities.append({
                    "start": len(input_ids_list),
                    "end": len(input_ids_list) + len(encode_res["input_ids"]),
                    "label": 'O',
                })
932 933 934 935
            input_ids_list.extend(encode_res["input_ids"])
            token_type_ids_list.extend(encode_res["token_type_ids"])
            bbox_list.extend([bbox] * len(encode_res["input_ids"]))
            words_list.append(text)
文幕地方's avatar
文幕地方 已提交
936 937 938 939 940 941 942 943 944 945
            segment_offset_id.append(len(input_ids_list))
            if not self.infer_mode:
                gt_label_list.extend(gt_label)

        data['input_ids'] = input_ids_list
        data['token_type_ids'] = token_type_ids_list
        data['bbox'] = bbox_list
        data['attention_mask'] = [1] * len(input_ids_list)
        data['labels'] = gt_label_list
        data['segment_offset_id'] = segment_offset_id
946 947 948 949
        data['tokenizer_params'] = dict(
            padding_side=self.tokenizer.padding_side,
            pad_token_type_id=self.tokenizer.pad_token_type_id,
            pad_token_id=self.tokenizer.pad_token_id)
文幕地方's avatar
文幕地方 已提交
950
        data['entities'] = entities
951

文幕地方's avatar
文幕地方 已提交
952 953 954 955 956
        if train_re:
            data['relations'] = relations
            data['id2label'] = id2label
            data['empty_entity'] = empty_entity
            data['entity_id_to_index_map'] = entity_id_to_index_map
957 958
        return data

959 960 961 962 963 964
    def trans_poly_to_bbox(self, poly):
        x1 = np.min([p[0] for p in poly])
        x2 = np.max([p[0] for p in poly])
        y1 = np.min([p[1] for p in poly])
        y2 = np.max([p[1] for p in poly])
        return [x1, y1, x2, y2]
文幕地方's avatar
文幕地方 已提交
965

966
    def _load_ocr_info(self, data):
文幕地方's avatar
文幕地方 已提交
967 968 969 970 971
        if self.infer_mode:
            ocr_result = self.ocr_engine.ocr(data['image'], cls=False)
            ocr_info = []
            for res in ocr_result:
                ocr_info.append({
972 973 974
                    "transcription": res[1][0],
                    "bbox": self.trans_poly_to_bbox(res[0]),
                    "points": res[0],
文幕地方's avatar
文幕地方 已提交
975 976 977 978 979 980
                })
            return ocr_info
        else:
            info = data['label']
            # read text info
            info_dict = json.loads(info)
981
            return info_dict
文幕地方's avatar
文幕地方 已提交
982 983 984 985 986 987 988 989 990 991

    def _smooth_box(self, bbox, height, width):
        bbox[0] = int(bbox[0] * 1000.0 / width)
        bbox[2] = int(bbox[2] * 1000.0 / width)
        bbox[1] = int(bbox[1] * 1000.0 / height)
        bbox[3] = int(bbox[3] * 1000.0 / height)
        return bbox

    def _parse_label(self, label, encode_res):
        gt_label = []
992
        if label.lower() in ["other", "others", "ignore"]:
文幕地方's avatar
文幕地方 已提交
993 994 995 996 997 998
            gt_label.extend([0] * len(encode_res["input_ids"]))
        else:
            gt_label.append(self.label2id_map[("b-" + label).upper()])
            gt_label.extend([self.label2id_map[("i-" + label).upper()]] *
                            (len(encode_res["input_ids"]) - 1))
        return gt_label
A
andyjpaddle 已提交
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029


class MultiLabelEncode(BaseRecLabelEncode):
    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
        super(MultiLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)

        self.ctc_encode = CTCLabelEncode(max_text_length, character_dict_path,
                                         use_space_char, **kwargs)
        self.sar_encode = SARLabelEncode(max_text_length, character_dict_path,
                                         use_space_char, **kwargs)

    def __call__(self, data):

        data_ctc = copy.deepcopy(data)
        data_sar = copy.deepcopy(data)
        data_out = dict()
        data_out['img_path'] = data.get('img_path', None)
        data_out['image'] = data['image']
        ctc = self.ctc_encode.__call__(data_ctc)
        sar = self.sar_encode.__call__(data_sar)
        if ctc is None or sar is None:
            return None
        data_out['label_ctc'] = ctc['label']
        data_out['label_sar'] = sar['label']
        data_out['length'] = ctc['length']
        return data_out
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125


class NRTRLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):

        super(NRTRLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
        if len(text) >= self.max_text_len - 1:
            return None
        data['length'] = np.array(len(text))
        text.insert(0, 2)
        text.append(3)
        text = text + [0] * (self.max_text_len - len(text))
        data['label'] = np.array(text)
        return data

    def add_special_char(self, dict_character):
        dict_character = ['blank', '<unk>', '<s>', '</s>'] + dict_character
        return dict_character


class ViTSTRLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 ignore_index=0,
                 **kwargs):

        super(ViTSTRLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
        self.ignore_index = ignore_index

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
        if len(text) >= self.max_text_len:
            return None
        data['length'] = np.array(len(text))
        text.insert(0, self.ignore_index)
        text.append(1)
        text = text + [self.ignore_index] * (self.max_text_len + 2 - len(text))
        data['label'] = np.array(text)
        return data

    def add_special_char(self, dict_character):
        dict_character = ['<s>', '</s>'] + dict_character
        return dict_character


class ABINetLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 ignore_index=100,
                 **kwargs):

        super(ABINetLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
        self.ignore_index = ignore_index

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
        if len(text) >= self.max_text_len:
            return None
        data['length'] = np.array(len(text))
        text.append(0)
        text = text + [self.ignore_index] * (self.max_text_len + 1 - len(text))
        data['label'] = np.array(text)
        return data

    def add_special_char(self, dict_character):
        dict_character = ['</s>'] + dict_character
        return dict_character