layoutlmv2.yml 3.2 KB
Newer Older
文幕地方's avatar
文幕地方 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
Global:
  use_gpu: True
  epoch_num: &epoch_num 200
  log_smooth_window: 10
  print_batch_step: 10
  save_model_dir: ./output/re_layoutlmv2/
  save_epoch_step: 2000
  # evaluation is run every 10 iterations after the 0th iteration
  eval_batch_step: [ 0, 19 ]
  cal_metric_during_train: False
  save_inference_dir:
  use_visualdl: False
  seed: 2048
  infer_img: doc/vqa/input/zh_val_21.jpg
  save_res_path: ./output/re/

Architecture:
  model_type: vqa
  algorithm: &algorithm "LayoutLMv2"
  Transform:
  Backbone:
    name: LayoutLMv2ForRe
    pretrained: True
    checkpoints: 

Loss:
  name: LossFromOutput
  key: loss
  reduction: mean

Optimizer:
  name: AdamW
  beta1: 0.9
  beta2: 0.999
  clip_norm: 10
  lr:
文幕地方's avatar
文幕地方 已提交
37 38 39 40 41 42
    # name: Piecewise
    # values: [0.000005, 0.00005]
    # decay_epochs: [10]
    # warmup_epoch: 0
    learning_rate: 0.00005
    warmup_epoch: 10
文幕地方's avatar
文幕地方 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
  regularizer:
    name: L2
    factor: 0.00000
    
PostProcess:
  name: VQAReTokenLayoutLMPostProcess

Metric:
  name: VQAReTokenMetric
  main_indicator: hmean

Train:
  dataset:
    name: SimpleDataSet
    data_dir: train_data/XFUND/zh_train/image
    label_file_list: 
      - train_data/XFUND/zh_train/xfun_normalize_train.json
    ratio_list: [ 1.0 ]
    transforms:
      - DecodeImage: # load image
          img_mode: RGB
          channel_first: False
      - VQATokenLabelEncode: # Class handling label
          contains_re: True
          algorithm: *algorithm
          class_path: &class_path ppstructure/vqa/labels/labels_ser.txt
      - VQATokenPad:
          max_seq_len: &max_seq_len 512
          return_attention_mask: True
      - VQAReTokenRelation:
      - VQAReTokenChunk:
          max_seq_len: *max_seq_len
      - Resize:
          size: [224,224]
      - NormalizeImage:
          scale: 1./255.
          mean: [0.485, 0.456, 0.406]
          std: [0.229, 0.224, 0.225]
          order: 'hwc'
      - ToCHWImage:
      - KeepKeys:
          keep_keys: [ 'input_ids', 'bbox', 'image', 'attention_mask', 'token_type_ids','entities', 'relations'] # dataloader will return list in this order
  loader:
    shuffle: True
    drop_last: False
    batch_size_per_card: 8
    num_workers: 8
    collate_fn: ListCollator

Eval:
  dataset:
    name: SimpleDataSet
    data_dir: train_data/XFUND/zh_val/image
    label_file_list:
      - train_data/XFUND/zh_val/xfun_normalize_val.json
    transforms:
      - DecodeImage: # load image
          img_mode: RGB
          channel_first: False
      - VQATokenLabelEncode: # Class handling label
          contains_re: True
          algorithm: *algorithm
          class_path: *class_path
      - VQATokenPad:
          max_seq_len: *max_seq_len
          return_attention_mask: True
      - VQAReTokenRelation:
      - VQAReTokenChunk:
          max_seq_len: *max_seq_len
      - Resize:
          size: [224,224]
      - NormalizeImage:
          scale: 1./255.
          mean: [0.485, 0.456, 0.406]
          std: [0.229, 0.224, 0.225]
          order: 'hwc'
      - ToCHWImage:
      - KeepKeys:
          keep_keys: [ 'input_ids', 'bbox', 'image', 'attention_mask', 'token_type_ids','entities', 'relations'] # dataloader will return list in this order
  loader:
    shuffle: False
    drop_last: False
    batch_size_per_card: 8
    num_workers: 8
    collate_fn: ListCollator