learning_rate.py 6.6 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

W
WenmuZhou 已提交
20
from paddle.optimizer import lr
W
WenmuZhou 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34


class Linear(object):
    """
    Linear learning rate decay
    Args:
        lr (float): The initial learning rate. It is a python float number.
        epochs(int): The decay step size. It determines the decay cycle.
        end_lr(float, optional): The minimum final learning rate. Default: 0.0001.
        power(float, optional): Power of polynomial. Default: 1.0.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
    """

    def __init__(self,
W
WenmuZhou 已提交
35
                 learning_rate,
W
WenmuZhou 已提交
36 37 38 39 40 41 42 43
                 epochs,
                 step_each_epoch,
                 end_lr=0.0,
                 power=1.0,
                 warmup_epoch=0,
                 last_epoch=-1,
                 **kwargs):
        super(Linear, self).__init__()
W
WenmuZhou 已提交
44
        self.learning_rate = learning_rate
W
WenmuZhou 已提交
45 46 47 48 49 50 51
        self.epochs = epochs * step_each_epoch
        self.end_lr = end_lr
        self.power = power
        self.last_epoch = last_epoch
        self.warmup_epoch = warmup_epoch * step_each_epoch

    def __call__(self):
W
WenmuZhou 已提交
52 53
        learning_rate = lr.PolynomialDecay(
            learning_rate=self.learning_rate,
W
WenmuZhou 已提交
54 55 56 57 58
            decay_steps=self.epochs,
            end_lr=self.end_lr,
            power=self.power,
            last_epoch=self.last_epoch)
        if self.warmup_epoch > 0:
W
WenmuZhou 已提交
59
            learning_rate = lr.LinearWarmup(
W
WenmuZhou 已提交
60 61 62
                learning_rate=learning_rate,
                warmup_steps=self.warmup_epoch,
                start_lr=0.0,
W
WenmuZhou 已提交
63
                end_lr=self.learning_rate,
W
WenmuZhou 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
                last_epoch=self.last_epoch)
        return learning_rate


class Cosine(object):
    """
    Cosine learning rate decay
    lr = 0.05 * (math.cos(epoch * (math.pi / epochs)) + 1)
    Args:
        lr(float): initial learning rate
        step_each_epoch(int): steps each epoch
        epochs(int): total training epochs
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
    """

    def __init__(self,
W
WenmuZhou 已提交
80
                 learning_rate,
W
WenmuZhou 已提交
81 82 83 84 85 86
                 step_each_epoch,
                 epochs,
                 warmup_epoch=0,
                 last_epoch=-1,
                 **kwargs):
        super(Cosine, self).__init__()
W
WenmuZhou 已提交
87
        self.learning_rate = learning_rate
W
WenmuZhou 已提交
88 89 90 91 92
        self.T_max = step_each_epoch * epochs
        self.last_epoch = last_epoch
        self.warmup_epoch = warmup_epoch * step_each_epoch

    def __call__(self):
W
WenmuZhou 已提交
93 94 95 96
        learning_rate = lr.CosineAnnealingDecay(
            learning_rate=self.learning_rate,
            T_max=self.T_max,
            last_epoch=self.last_epoch)
W
WenmuZhou 已提交
97
        if self.warmup_epoch > 0:
W
WenmuZhou 已提交
98
            learning_rate = lr.LinearWarmup(
W
WenmuZhou 已提交
99 100 101
                learning_rate=learning_rate,
                warmup_steps=self.warmup_epoch,
                start_lr=0.0,
W
WenmuZhou 已提交
102
                end_lr=self.learning_rate,
W
WenmuZhou 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
                last_epoch=self.last_epoch)
        return learning_rate


class Step(object):
    """
    Piecewise learning rate decay
    Args:
        step_each_epoch(int): steps each epoch
        learning_rate (float): The initial learning rate. It is a python float number.
        step_size (int): the interval to update.
        gamma (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * gamma`` .
            It should be less than 1.0. Default: 0.1.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
    """

    def __init__(self,
W
WenmuZhou 已提交
120
                 learning_rate,
W
WenmuZhou 已提交
121 122 123 124 125 126 127 128
                 step_size,
                 step_each_epoch,
                 gamma,
                 warmup_epoch=0,
                 last_epoch=-1,
                 **kwargs):
        super(Step, self).__init__()
        self.step_size = step_each_epoch * step_size
W
WenmuZhou 已提交
129
        self.learning_rate = learning_rate
W
WenmuZhou 已提交
130 131 132 133 134
        self.gamma = gamma
        self.last_epoch = last_epoch
        self.warmup_epoch = warmup_epoch * step_each_epoch

    def __call__(self):
W
WenmuZhou 已提交
135 136
        learning_rate = lr.StepDecay(
            learning_rate=self.learning_rate,
W
WenmuZhou 已提交
137 138 139 140
            step_size=self.step_size,
            gamma=self.gamma,
            last_epoch=self.last_epoch)
        if self.warmup_epoch > 0:
W
WenmuZhou 已提交
141
            learning_rate = lr.LinearWarmup(
W
WenmuZhou 已提交
142 143 144
                learning_rate=learning_rate,
                warmup_steps=self.warmup_epoch,
                start_lr=0.0,
W
WenmuZhou 已提交
145
                end_lr=self.learning_rate,
W
WenmuZhou 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
                last_epoch=self.last_epoch)
        return learning_rate


class Piecewise(object):
    """
    Piecewise learning rate decay
    Args:
        boundaries(list): A list of steps numbers. The type of element in the list is python int.
        values(list): A list of learning rate values that will be picked during different epoch boundaries.
            The type of element in the list is python float.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
    """

    def __init__(self,
                 step_each_epoch,
                 decay_epochs,
                 values,
                 warmup_epoch=0,
                 last_epoch=-1,
                 **kwargs):
        super(Piecewise, self).__init__()
        self.boundaries = [step_each_epoch * e for e in decay_epochs]
        self.values = values
        self.last_epoch = last_epoch
        self.warmup_epoch = warmup_epoch * step_each_epoch

    def __call__(self):
W
WenmuZhou 已提交
174
        learning_rate = lr.PiecewiseDecay(
W
WenmuZhou 已提交
175 176 177 178
            boundaries=self.boundaries,
            values=self.values,
            last_epoch=self.last_epoch)
        if self.warmup_epoch > 0:
W
WenmuZhou 已提交
179
            learning_rate = lr.LinearWarmup(
W
WenmuZhou 已提交
180 181 182 183 184 185
                learning_rate=learning_rate,
                warmup_steps=self.warmup_epoch,
                start_lr=0.0,
                end_lr=self.values[0],
                last_epoch=self.last_epoch)
        return learning_rate