predict_e2e.py 5.7 KB
Newer Older
J
Jethong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))

os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

import cv2
import numpy as np
import time
import sys

import tools.infer.utility as utility
from ppocr.utils.logging import get_logger
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
from ppocr.data import create_operators, transform
from ppocr.postprocess import build_post_process

logger = get_logger()


class TextE2e(object):
    def __init__(self, args):
        self.args = args
        self.e2e_algorithm = args.e2e_algorithm
        pre_process_list = [{
J
Jethong 已提交
42
            'E2EResizeForTest': {}
J
Jethong 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
        }, {
            'NormalizeImage': {
                'std': [0.229, 0.224, 0.225],
                'mean': [0.485, 0.456, 0.406],
                'scale': '1./255.',
                'order': 'hwc'
            }
        }, {
            'ToCHWImage': None
        }, {
            'KeepKeys': {
                'keep_keys': ['image', 'shape']
            }
        }]
        postprocess_params = {}
        if self.e2e_algorithm == "PGNet":
            pre_process_list[0] = {
                'E2EResizeForTest': {
                    'max_side_len': args.e2e_limit_side_len,
                    'valid_set': 'totaltext'
                }
            }
            postprocess_params['name'] = 'PGPostProcess'
            postprocess_params["score_thresh"] = args.e2e_pgnet_score_thresh
            postprocess_params["character_dict_path"] = args.e2e_char_dict_path
            postprocess_params["valid_set"] = args.e2e_pgnet_valid_set
            self.e2e_pgnet_polygon = args.e2e_pgnet_polygon
        else:
            logger.info("unknown e2e_algorithm:{}".format(self.e2e_algorithm))
            sys.exit(0)

        self.preprocess_op = create_operators(pre_process_list)
        self.postprocess_op = build_post_process(postprocess_params)
        self.predictor, self.input_tensor, self.output_tensors = utility.create_predictor(
            args, 'e2e', logger)  # paddle.jit.load(args.det_model_dir)
        # self.predictor.eval()

    def clip_det_res(self, points, img_height, img_width):
        for pno in range(points.shape[0]):
            points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
            points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1))
        return points

    def filter_tag_det_res_only_clip(self, dt_boxes, image_shape):
        img_height, img_width = image_shape[0:2]
        dt_boxes_new = []
        for box in dt_boxes:
            box = self.clip_det_res(box, img_height, img_width)
            dt_boxes_new.append(box)
        dt_boxes = np.array(dt_boxes_new)
        return dt_boxes

    def __call__(self, img):
J
Jethong 已提交
96

J
Jethong 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
        ori_im = img.copy()
        data = {'image': img}
        data = transform(data, self.preprocess_op)
        img, shape_list = data
        if img is None:
            return None, 0
        img = np.expand_dims(img, axis=0)
        shape_list = np.expand_dims(shape_list, axis=0)
        img = img.copy()
        starttime = time.time()

        self.input_tensor.copy_from_cpu(img)
        self.predictor.run()
        outputs = []
        for output_tensor in self.output_tensors:
            output = output_tensor.copy_to_cpu()
            outputs.append(output)

        preds = {}
        if self.e2e_algorithm == 'PGNet':
J
Jethong 已提交
117 118
            preds['f_border'] = outputs[0]
            preds['f_char'] = outputs[1]
J
Jethong 已提交
119
            preds['f_direction'] = outputs[2]
J
Jethong 已提交
120
            preds['f_score'] = outputs[3]
J
Jethong 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
        else:
            raise NotImplementedError
        post_result = self.postprocess_op(preds, shape_list)
        points, strs = post_result['points'], post_result['strs']
        dt_boxes = self.filter_tag_det_res_only_clip(points, ori_im.shape)
        elapse = time.time() - starttime
        return dt_boxes, strs, elapse


if __name__ == "__main__":
    args = utility.parse_args()
    image_file_list = get_image_file_list(args.image_dir)
    text_detector = TextE2e(args)
    count = 0
    total_time = 0
    draw_img_save = "./inference_results"
    if not os.path.exists(draw_img_save):
        os.makedirs(draw_img_save)
    for image_file in image_file_list:
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        points, strs, elapse = text_detector(img)
        if count > 0:
            total_time += elapse
        count += 1
        logger.info("Predict time of {}: {}".format(image_file, elapse))
        src_im = utility.draw_e2e_res(points, strs, image_file)
        img_name_pure = os.path.split(image_file)[-1]
        img_path = os.path.join(draw_img_save,
                                "e2e_res_{}".format(img_name_pure))
        cv2.imwrite(img_path, src_im)
        logger.info("The visualized image saved in {}".format(img_path))
    if count > 1:
        logger.info("Avg Time: {}".format(total_time / (count - 1)))