algorithm_det_east_en.md 3.4 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
# EAST

- [1. Introduction](#1)
- [2. Environment](#2)
- [3. Model Training / Evaluation / Prediction](#3)
    - [3.1 Training](#3-1)
    - [3.2 Evaluation](#3-2)
    - [3.3 Prediction](#3-3)
- [4. Inference and Deployment](#4)
    - [4.1 Python Inference](#4-1)
    - [4.2 C++ Inference](#4-2)
    - [4.3 Serving](#4-3)
    - [4.4 More](#4-4)
- [5. FAQ](#5)

<a name="1"></a>
## 1. Introduction

Paper:
> [EAST: An Efficient and Accurate Scene Text Detector](https://arxiv.org/abs/1704.03155)
> Xinyu Zhou, Cong Yao, He Wen, Yuzhi Wang, Shuchang Zhou, Weiran He, Jiajun Liang
> CVPR, 2017


On the ICDAR2015 dataset, the text detection result is as follows:

|Model|Backbone|Configuration|Precision|Recall|Hmean|Download|
| --- | --- | --- | --- | --- | --- | --- |
|EAST|ResNet50_vd|88.71%|    81.36%|    84.88%|    [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_east_v2.0_train.tar)|
|EAST|    MobileNetV3| 78.2%|    79.1%|    78.65%|    [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_east_v2.0_train.tar)|


<a name="2"></a>
## 2. Environment
Please prepare your environment referring to [prepare the environment](./environment_en.md) and [clone the repo](./clone_en.md).


<a name="3"></a>
## 3. Model Training / Evaluation / Prediction

The above EAST model is trained using the ICDAR2015 text detection public dataset. For the download of the dataset, please refer to [ocr_datasets](./dataset/ocr_datasets_en.md).

After the data download is complete, please refer to [Text Detection Training Tutorial](./detection.md) for training. PaddleOCR has modularized the code structure, so that you only need to **replace the configuration file** to train different detection models.


<a name="4"></a>
## 4. Inference and Deployment


<a name="4-1"></a>
### 4.1 Python Inference

First, convert the model saved in the EAST text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the ICDAR2015 English dataset as example ([model download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_east_v2.0_train.tar)), you can use the following command to convert:

```shell
python3 tools/export_model.py -c configs/det/det_r50_vd_east.yml -o Global.pretrained_model=./det_r50_vd_east_v2.0_train/best_accuracy  Global.save_inference_dir=./inference/det_r50_east/
```

L
LDOUBLEV 已提交
59
For EAST text detection model inference, you need to set the parameter --det_algorithm="EAST", run the following command:
L
LDOUBLEV 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
```shell
python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_r50_east/" --det_algorithm="EAST"
```


The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'det_res'.



<a name="4-2"></a>
### 4.2 C++ Inference

Since the post-processing is not written in CPP, the EAST text detection model does not support CPP inference.

<a name="4-3"></a>
### 4.3 Serving

Not supported

<a name="4-4"></a>
### 4.4 More

Not supported

<a name="5"></a>
## 5. FAQ


## Citation

```bibtex
@inproceedings{zhou2017east,
  title={East: an efficient and accurate scene text detector},
  author={Zhou, Xinyu and Yao, Cong and Wen, He and Wang, Yuzhi and Zhou, Shuchang and He, Weiran and Liang, Jiajun},
  booktitle={Proceedings of the IEEE conference on Computer Vision and Pattern Recognition},
  pages={5551--5560},
  year={2017}
}
```