whl_en.md 12.3 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12
# paddleocr package

## Get started quickly
### install package
install by pypi
```bash
pip install paddleocr
```

build own whl package and install
```bash
python setup.py bdist_wheel
W
WenmuZhou 已提交
13
pip install dist/paddleocr-0.0.3-py3-none-any.whl
W
WenmuZhou 已提交
14 15 16 17 18 19
```
### 1. Use by code

* detection and recognition
```python
from paddleocr import PaddleOCR,draw_ocr
W
WenmuZhou 已提交
20
ocr = PaddleOCR() # need to run only once to download and load model into memory
W
WenmuZhou 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
img_path = 'PaddleOCR/doc/imgs_en/img_12.jpg'
result = ocr.ocr(img_path)
for line in result:
    print(line)

# draw result
from PIL import Image
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
im_show = draw_ocr(image, boxes, txts, scores, font_path='/path/to/PaddleOCR/doc/simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```

Output will be a list, each item contains bounding box, text and recognition confidence
```bash
[[[442.0, 173.0], [1169.0, 173.0], [1169.0, 225.0], [442.0, 225.0]], ['ACKNOWLEDGEMENTS', 0.99283075]]
[[[393.0, 340.0], [1207.0, 342.0], [1207.0, 389.0], [393.0, 387.0]], ['We would like to thank all the designers and', 0.9357758]]
[[[399.0, 398.0], [1204.0, 398.0], [1204.0, 433.0], [399.0, 433.0]], ['contributors whohave been involved in the', 0.9592447]]
W
WenmuZhou 已提交
42
......
W
WenmuZhou 已提交
43 44 45 46 47 48 49 50 51 52 53
```

Visualization of results

<div align="center">
    <img src="../imgs_results/whl/12_det_rec.jpg" width="800">
</div>

* only detection
```python
from paddleocr import PaddleOCR,draw_ocr
W
WenmuZhou 已提交
54
ocr = PaddleOCR() # need to run only once to download and load model into memory
W
WenmuZhou 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
img_path = 'PaddleOCR/doc/imgs_en/img_12.jpg'
result = ocr.ocr(img_path,rec=False)
for line in result:
    print(line)

# draw result
from PIL import Image

image = Image.open(img_path).convert('RGB')
im_show = draw_ocr(image, result, txts=None, scores=None, font_path='/path/to/PaddleOCR/doc/simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```

Output will be a list, each item only contains bounding box
```bash
[[756.0, 812.0], [805.0, 812.0], [805.0, 830.0], [756.0, 830.0]]
[[820.0, 803.0], [1085.0, 801.0], [1085.0, 836.0], [820.0, 838.0]]
[[393.0, 801.0], [715.0, 805.0], [715.0, 839.0], [393.0, 836.0]]
W
WenmuZhou 已提交
74
......
W
WenmuZhou 已提交
75 76 77 78 79 80 81 82 83 84 85
```

Visualization of results

<div align="center">
    <img src="../imgs_results/whl/12_det.jpg" width="800">
</div>

* only recognition
```python
from paddleocr import PaddleOCR
W
WenmuZhou 已提交
86
ocr = PaddleOCR() # need to run only once to load model into memory
W
WenmuZhou 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
img_path = 'PaddleOCR/doc/imgs_words_en/word_10.png'
result = ocr.ocr(img_path,det=False)
for line in result:
    print(line)
```

Output will be a list, each item contains text and recognition confidence
```bash
['PAIN', 0.990372]
```

### Use by command line

show help information
```bash
paddleocr -h
```

* detection and recognition
```bash
paddleocr --image_dir PaddleOCR/doc/imgs_en/img_12.jpg
```

Output will be a list, each item contains bounding box, text and recognition confidence
```bash
[[[442.0, 173.0], [1169.0, 173.0], [1169.0, 225.0], [442.0, 225.0]], ['ACKNOWLEDGEMENTS', 0.99283075]]
[[[393.0, 340.0], [1207.0, 342.0], [1207.0, 389.0], [393.0, 387.0]], ['We would like to thank all the designers and', 0.9357758]]
[[[399.0, 398.0], [1204.0, 398.0], [1204.0, 433.0], [399.0, 433.0]], ['contributors whohave been involved in the', 0.9592447]]
W
WenmuZhou 已提交
115
......
W
WenmuZhou 已提交
116 117 118 119 120 121 122 123 124 125 126 127
```

* only detection
```bash
paddleocr --image_dir PaddleOCR/doc/imgs_en/img_12.jpg --rec false
```

Output will be a list, each item only contains bounding box
```bash
[[756.0, 812.0], [805.0, 812.0], [805.0, 830.0], [756.0, 830.0]]
[[820.0, 803.0], [1085.0, 801.0], [1085.0, 836.0], [820.0, 838.0]]
[[393.0, 801.0], [715.0, 805.0], [715.0, 839.0], [393.0, 836.0]]
W
WenmuZhou 已提交
128
......
W
WenmuZhou 已提交
129 130 131 132 133 134 135 136 137 138 139 140
```

* only recognition
```bash
paddleocr --image_dir PaddleOCR/doc/imgs_words_en/word_10.png --det false
```

Output will be a list, each item contains text and recognition confidence
```bash
['PAIN', 0.990372]
```

W
WenmuZhou 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
## Use custom model
When the built-in model cannot meet the needs, you need to use your own trained model.
First, refer to the first section of [inference_en.md](./inference_en.md) to convert your det and rec model to inference model, and then use it as follows

### 1. Use by code

```python
from paddleocr import PaddleOCR,draw_ocr
# The path of detection and recognition model must contain model and params files
ocr = PaddleOCR(det_model_dir='your_det_model_dir',rec_model_dir='your_rec_model_dir')
img_path = 'PaddleOCR/doc/imgs_en/img_12.jpg'
result = ocr.ocr(img_path)
for line in result:
    print(line)

# draw result
from PIL import Image
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
im_show = draw_ocr(image, boxes, txts, scores, font_path='/path/to/PaddleOCR/doc/simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```

### Use by command line

```bash
paddleocr --image_dir PaddleOCR/doc/imgs/11.jpg --det_model_dir your_det_model_dir --rec_model_dir your_rec_model_dir
```

W
WenmuZhou 已提交
173 174 175 176 177 178 179 180
## Parameter Description

| Parameter                    | Description                                                                                                                                                                                                                 | Default value                  |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| use_gpu                 | use GPU or not                                                                                                                                                                                                          | TRUE                    |
| gpu_mem                 | GPU memory size used for initialization                                                                                                                                                                                              | 8000M                   |
| image_dir               | The images path or folder path for predicting when used by the command line                                                                                                                                                                           |                         |
| det_algorithm           | Type of detection algorithm selected                                                                                                                                                                                                   | DB                      |
W
WenmuZhou 已提交
181
| det_model_dir           | the text detection inference model folder. There are two ways to transfer parameters, 1. None: Automatically download the built-in model to `~/.paddleocr/det`; 2. The path of the inference model converted by yourself, the model and params files must be included in the model path | None           |
W
WenmuZhou 已提交
182 183 184 185 186 187 188 189
| det_max_side_len        | The maximum size of the long side of the image. When the long side exceeds this value, the long side will be resized to this size, and the short side will be scaled proportionally                                                                                                                         | 960                     |
| det_db_thresh           | Binarization threshold value of DB output map                                                                                                                                                                                        | 0.3                     |
| det_db_box_thresh       | The threshold value of the DB output box. Boxes score lower than this value will be discarded                                                                                                                                                                         | 0.5                     |
| det_db_unclip_ratio     | The expanded ratio of DB output box                                                                                                                                                                                             | 2                       |
| det_east_score_thresh   | Binarization threshold value of EAST output map                                                                                                                                                                                       | 0.8                     |
| det_east_cover_thresh   | The threshold value of the EAST output box. Boxes score lower than this value will be discarded                                                                                                                                                                         | 0.1                     |
| det_east_nms_thresh     | The NMS threshold value of EAST model output box                                                                                                                                                                                              | 0.2                     |
| rec_algorithm           | Type of recognition algorithm selected                                                                                                                                                                                                | CRNN                    |
W
WenmuZhou 已提交
190
| rec_model_dir           | the text recognition inference model folder. There are two ways to transfer parameters, 1. None: Automatically download the built-in model to `~/.paddleocr/rec`; 2. The path of the inference model converted by yourself, the model and params files must be included in the model path | None |
W
WenmuZhou 已提交
191 192 193
| rec_image_shape         | image shape of recognition algorithm                                                                                                                                                                                            | "3,32,320"              |
| rec_char_type           | Character type of recognition algorithm, Chinese (ch) or English (en)                                                                                                                                                                               | ch                      |
| rec_batch_num           | When performing recognition, the batchsize of forward images                                                                                                                                                                                         | 30                      |
W
WenmuZhou 已提交
194 195
| max_text_length         | The maximum text length that the recognition algorithm can recognize                                                                                                                                                                                         | 25                      |
| rec_char_dict_path      | the alphabet path which needs to be modified to your own path when `rec_model_Name` use mode 2                                                                                                                                              | ./ppocr/utils/ppocr_keys_v1.txt                        |
W
WenmuZhou 已提交
196 197 198 199
| use_space_char          | Whether to recognize spaces                                                                                                                                                                                                         | TRUE                    |
| enable_mkldnn           | Whether to enable mkldnn                                                                                                                                                                                                       | FALSE                   |
| det                     | Enable detction when `ppocr.ocr` func exec                                                                                                                                                                                                   | TRUE                    |
| rec                     | Enable detction when `ppocr.ocr` func exec                                                                                                                                                                                                   | TRUE                    |