eval_re.py 4.1 KB
Newer Older
Z
zhoujun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))

import paddle

from paddlenlp.transformers import LayoutXLMTokenizer, LayoutXLMModel, LayoutXLMForRelationExtraction

from xfun import XFUNDataset
littletomatodonkey's avatar
littletomatodonkey 已提交
27
from vqa_utils import parse_args, get_bio_label_maps, print_arguments
Z
zhoujun 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
from data_collator import DataCollator
from metric import re_score

from ppocr.utils.logging import get_logger


def cal_metric(re_preds, re_labels, entities):
    gt_relations = []
    for b in range(len(re_labels)):
        rel_sent = []
        for head, tail in zip(re_labels[b]["head"], re_labels[b]["tail"]):
            rel = {}
            rel["head_id"] = head
            rel["head"] = (entities[b]["start"][rel["head_id"]],
                           entities[b]["end"][rel["head_id"]])
            rel["head_type"] = entities[b]["label"][rel["head_id"]]

            rel["tail_id"] = tail
            rel["tail"] = (entities[b]["start"][rel["tail_id"]],
                           entities[b]["end"][rel["tail_id"]])
            rel["tail_type"] = entities[b]["label"][rel["tail_id"]]

            rel["type"] = 1
            rel_sent.append(rel)
        gt_relations.append(rel_sent)
    re_metrics = re_score(re_preds, gt_relations, mode="boundaries")
    return re_metrics


def evaluate(model, eval_dataloader, logger, prefix=""):
    # Eval!
    logger.info("***** Running evaluation {} *****".format(prefix))
    logger.info("  Num examples = {}".format(len(eval_dataloader.dataset)))

    re_preds = []
    re_labels = []
    entities = []
    eval_loss = 0.0
    model.eval()
    for idx, batch in enumerate(eval_dataloader):
        with paddle.no_grad():
            outputs = model(**batch)
            loss = outputs['loss'].mean().item()
            if paddle.distributed.get_rank() == 0:
                logger.info("[Eval] process: {}/{}, loss: {:.5f}".format(
                    idx, len(eval_dataloader), loss))

            eval_loss += loss
        re_preds.extend(outputs['pred_relations'])
        re_labels.extend(batch['relations'])
        entities.extend(batch['entities'])
    re_metrics = cal_metric(re_preds, re_labels, entities)
    re_metrics = {
        "precision": re_metrics["ALL"]["p"],
        "recall": re_metrics["ALL"]["r"],
        "f1": re_metrics["ALL"]["f1"],
    }
    model.train()
    return re_metrics


def eval(args):
    logger = get_logger()
    label2id_map, id2label_map = get_bio_label_maps(args.label_map_path)
    pad_token_label_id = paddle.nn.CrossEntropyLoss().ignore_index

    tokenizer = LayoutXLMTokenizer.from_pretrained(args.model_name_or_path)

    model = LayoutXLMForRelationExtraction.from_pretrained(
        args.model_name_or_path)

    eval_dataset = XFUNDataset(
        tokenizer,
        data_dir=args.eval_data_dir,
        label_path=args.eval_label_path,
        label2id_map=label2id_map,
        img_size=(224, 224),
        max_seq_len=args.max_seq_length,
        pad_token_label_id=pad_token_label_id,
        contains_re=True,
        add_special_ids=False,
        return_attention_mask=True,
        load_mode='all')

    eval_dataloader = paddle.io.DataLoader(
        eval_dataset,
        batch_size=args.per_gpu_eval_batch_size,
文幕地方's avatar
文幕地方 已提交
115
        num_workers=args.num_workers,
Z
zhoujun 已提交
116 117 118 119 120 121 122 123 124 125
        shuffle=False,
        collate_fn=DataCollator())

    results = evaluate(model, eval_dataloader, logger)
    logger.info("eval results: {}".format(results))


if __name__ == "__main__":
    args = parse_args()
    eval(args)