utility.py 3.0 KB
Newer Older
S
shaohua.zhang 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
L
LDOUBLEV 已提交
2
#
S
shaohua.zhang 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
L
LDOUBLEV 已提交
6
#
S
shaohua.zhang 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
L
LDOUBLEV 已提交
8
#
S
shaohua.zhang 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
LDOUBLEV 已提交
14

S
shaohua.zhang 已提交
15
import logging
S
shaohua.zhang 已提交
16
import os
S
shaohua.zhang 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89


def initial_logger():
    FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
    logging.basicConfig(level=logging.INFO, format=FORMAT)
    logger = logging.getLogger(__name__)
    return logger


import importlib


def create_module(module_str):
    tmpss = module_str.split(",")
    assert len(tmpss) == 2, "Error formate\
        of the module path: {}".format(module_str)
    module_name, function_name = tmpss[0], tmpss[1]
    somemodule = importlib.import_module(module_name, __package__)
    function = getattr(somemodule, function_name)
    return function


def get_check_global_params(mode):
    check_params = ['use_gpu', 'max_text_length', 'image_shape',\
        'image_shape', 'character_type', 'loss_type']
    if mode == "train_eval":
        check_params = check_params + [\
            'train_batch_size_per_card', 'test_batch_size_per_card']
    elif mode == "test":
        check_params = check_params + ['test_batch_size_per_card']
    return check_params


def get_check_reader_params(mode):
    check_params = []
    if mode == "train_eval":
        check_params = ['TrainReader', 'EvalReader']
    elif mode == "test":
        check_params = ['TestReader']
    return check_params


def get_image_file_list(img_file):
    imgs_lists = []
    if img_file is None or not os.path.exists(img_file):
        raise Exception("not found any img file in {}".format(img_file))

    img_end = ['jpg', 'png', 'jpeg', 'JPEG', 'JPG', 'bmp']
    if os.path.isfile(img_file) and img_file.split('.')[-1] in img_end:
        imgs_lists.append(img_file)
    elif os.path.isdir(img_file):
        for single_file in os.listdir(img_file):
            if single_file.split('.')[-1] in img_end:
                imgs_lists.append(os.path.join(img_file, single_file))
    if len(imgs_lists) == 0:
        raise Exception("not found any img file in {}".format(img_file))
    return imgs_lists


from paddle import fluid


def create_multi_devices_program(program, loss_var_name):
    build_strategy = fluid.BuildStrategy()
    build_strategy.memory_optimize = False
    build_strategy.enable_inplace = True
    exec_strategy = fluid.ExecutionStrategy()
    exec_strategy.num_iteration_per_drop_scope = 1
    compile_program = fluid.CompiledProgram(program).with_data_parallel(
        loss_name=loss_var_name,
        build_strategy=build_strategy,
        exec_strategy=exec_strategy)
    return compile_program