train.py 4.7 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys
W
WenmuZhou 已提交
21

22
__dir__ = os.path.dirname(os.path.abspath(__file__))
L
LDOUBLEV 已提交
23
sys.path.append(__dir__)
24
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
L
LDOUBLEV 已提交
25

W
WenmuZhou 已提交
26 27 28
import yaml
import paddle
import paddle.distributed as dist
L
LDOUBLEV 已提交
29

W
WenmuZhou 已提交
30
paddle.manual_seed(2)
L
LDOUBLEV 已提交
31

W
WenmuZhou 已提交
32 33 34 35 36 37 38 39 40
from ppocr.utils.logging import get_logger
from ppocr.data import build_dataloader
from ppocr.modeling import build_model, build_loss
from ppocr.optimizer import build_optimizer
from ppocr.postprocess import build_post_process
from ppocr.metrics import build_metric
from ppocr.utils.save_load import init_model
from ppocr.utils.utility import print_dict
import tools.program as program
L
LDOUBLEV 已提交
41

W
WenmuZhou 已提交
42
dist.get_world_size()
L
LDOUBLEV 已提交
43 44


W
WenmuZhou 已提交
45 46 47 48
def main(config, device, logger, vdl_writer):
    # init dist environment
    if config['Global']['distributed']:
        dist.init_parallel_env()
L
LDOUBLEV 已提交
49

W
WenmuZhou 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
    global_config = config['Global']
    # build dataloader
    train_loader, train_info_dict = build_dataloader(
        config['TRAIN'], device, global_config['distributed'], global_config)
    if config['EVAL']:
        eval_loader, _ = build_dataloader(config['EVAL'], device, False,
                                          global_config)
    else:
        eval_loader = None
    # build post process
    post_process_class = build_post_process(config['PostProcess'],
                                            global_config)
    # build model
    # for rec algorithm
    if hasattr(post_process_class, 'character'):
        config['Architecture']["Head"]['out_channels'] = len(
            getattr(post_process_class, 'character'))
    model = build_model(config['Architecture'])
    if config['Global']['distributed']:
        model = paddle.DataParallel(model)

    # build optim
    optimizer, lr_scheduler = build_optimizer(
        config['Optimizer'],
        epochs=config['Global']['epoch_num'],
        step_each_epoch=len(train_loader),
        parameters=model.parameters())

    best_model_dict = init_model(config, model, logger, optimizer)

    # build loss
    loss_class = build_loss(config['Loss'])
    # build metric
    eval_class = build_metric(config['Metric'])

    # start train
    program.train(config, model, loss_class, optimizer, lr_scheduler,
                  train_loader, eval_loader, post_process_class, eval_class,
                  best_model_dict, logger, vdl_writer)


91 92 93
def test_reader(config, place, logger, global_config):
    train_loader, _ = build_dataloader(
        config['TRAIN'], place, global_config=global_config)
94 95 96 97
    import time
    starttime = time.time()
    count = 0
    try:
98
        for data in train_loader:
99 100 101 102
            count += 1
            if count % 1 == 0:
                batch_time = time.time() - starttime
                starttime = time.time()
103 104
                logger.info("reader: {}, {}, {}".format(
                    count, len(data[0]), batch_time))
105
    except Exception as e:
106 107
        import traceback
        traceback.print_exc()
L
LDOUBLEV 已提交
108 109
        logger.info(e)
    logger.info("finish reader: {}, Success!".format(count))
110 111


W
WenmuZhou 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
def dis_main():
    device, config = program.preprocess()
    config['Global']['distributed'] = dist.get_world_size() != 1
    paddle.disable_static(device)

    # save_config
    os.makedirs(config['Global']['save_model_dir'], exist_ok=True)
    with open(
            os.path.join(config['Global']['save_model_dir'], 'config.yml'),
            'w') as f:
        yaml.dump(dict(config), f, default_flow_style=False, sort_keys=False)

    logger = get_logger(
        log_file='{}/train.log'.format(config['Global']['save_model_dir']))
    if config['Global']['use_visualdl']:
        from visualdl import LogWriter
        vdl_writer = LogWriter(logdir=config['Global']['save_model_dir'])
    else:
        vdl_writer = None
    print_dict(config, logger)
    logger.info('train with paddle {} and device {}'.format(paddle.__version__,
                                                            device))

    main(config, device, logger, vdl_writer)
136
    # test_reader(config, device, logger, config['Global'])
W
WenmuZhou 已提交
137 138


L
LDOUBLEV 已提交
139
if __name__ == '__main__':
W
WenmuZhou 已提交
140 141 142
    # main()
    # dist.spawn(dis_main, nprocs=2, selelcted_gpus='6,7')
    dis_main()