rec_local_server.py 7.1 KB
Newer Older
W
wangjiawei04 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle_serving_client import Client
from paddle_serving_app.reader import OCRReader
import cv2
import sys
import numpy as np
import os
import time
import re
import base64
W
wangjiawei04 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
from tools.infer.predict_rec import TextRecognizer
import tools.infer.utility as utility

global_args = utility.parse_args()
if global_args.use_gpu:
    from paddle_serving_server_gpu.web_service import WebService
else:
    from paddle_serving_server.web_service import WebService


class TextRecognizerHelper(TextRecognizer):
    def __init__(self, args):
        super(TextRecognizerHelper, self).__init__(args)
        if self.loss_type == "ctc":
            self.fetch = ["ctc_greedy_decoder_0.tmp_0", "softmax_0.tmp_0"]

    def preprocess(self, img_list):
        img_num = len(img_list)
        args = {}
        # Calculate the aspect ratio of all text bars
        width_list = []
        for img in img_list:
            width_list.append(img.shape[1] / float(img.shape[0]))
        indices = np.argsort(np.array(width_list))
        args["indices"] = indices
        predict_time = 0
        beg_img_no = 0
        end_img_no = img_num
        norm_img_batch = []
        max_wh_ratio = 0
        for ino in range(beg_img_no, end_img_no):
            h, w = img_list[indices[ino]].shape[0:2]
            wh_ratio = w * 1.0 / h
            max_wh_ratio = max(max_wh_ratio, wh_ratio)
        for ino in range(beg_img_no, end_img_no):
            if self.loss_type != "srn":
                norm_img = self.resize_norm_img(img_list[indices[ino]],
                                                max_wh_ratio)
                norm_img = norm_img[np.newaxis, :]
                norm_img_batch.append(norm_img)
            else:
                norm_img = self.process_image_srn(img_list[indices[ino]],
                                                  self.rec_image_shape, 8, 25,
                                                  self.char_ops)
                encoder_word_pos_list = []
                gsrm_word_pos_list = []
                gsrm_slf_attn_bias1_list = []
                gsrm_slf_attn_bias2_list = []
                encoder_word_pos_list.append(norm_img[1])
                gsrm_word_pos_list.append(norm_img[2])
                gsrm_slf_attn_bias1_list.append(norm_img[3])
                gsrm_slf_attn_bias2_list.append(norm_img[4])
                norm_img_batch.append(norm_img[0])
        norm_img_batch = np.concatenate(norm_img_batch, axis=0).copy()
        feed = {"image": norm_img_batch.copy()}
        return feed, self.fetch, args

    def postprocess(self, outputs, args):
        if self.loss_type == "ctc":
            rec_idx_batch = outputs[0]
            predict_batch = outputs[1]
            rec_idx_lod = args["ctc_greedy_decoder_0.tmp_0.lod"]
            predict_lod = args["softmax_0.tmp_0.lod"]
            indices = args["indices"]
            print("indices", indices, rec_idx_lod)
            rec_res = [['', 0.0]] * (len(rec_idx_lod) - 1)
            for rno in range(len(rec_idx_lod) - 1):
                beg = rec_idx_lod[rno]
                end = rec_idx_lod[rno + 1]
                rec_idx_tmp = rec_idx_batch[beg:end, 0]
                preds_text = self.char_ops.decode(rec_idx_tmp)
                beg = predict_lod[rno]
                end = predict_lod[rno + 1]
                probs = predict_batch[beg:end, :]
                ind = np.argmax(probs, axis=1)
                blank = probs.shape[1]
                valid_ind = np.where(ind != (blank - 1))[0]
                if len(valid_ind) == 0:
                    continue
                score = np.mean(probs[valid_ind, ind[valid_ind]])
                rec_res[indices[rno]] = [preds_text, score]
        elif self.loss_type == 'srn':
            char_num = self.char_ops.get_char_num()
            preds = rec_idx_batch.reshape(-1)
            elapse = time.time() - starttime
            predict_time += elapse
            total_preds = preds.copy()
            for ino in range(int(len(rec_idx_batch) / self.text_len)):
                preds = total_preds[ino * self.text_len:(ino + 1) *
                                    self.text_len]
                ind = np.argmax(probs, axis=1)
                valid_ind = np.where(preds != int(char_num - 1))[0]
                if len(valid_ind) == 0:
                    continue
                score = np.mean(probs[valid_ind, ind[valid_ind]])
                preds = preds[:valid_ind[-1] + 1]
                preds_text = self.char_ops.decode(preds)
                rec_res[indices[ino]] = [preds_text, score]
        else:
            for rno in range(len(rec_idx_batch)):
                end_pos = np.where(rec_idx_batch[rno, :] == 1)[0]
                if len(end_pos) <= 1:
                    preds = rec_idx_batch[rno, 1:]
                    score = np.mean(predict_batch[rno, 1:])
                else:
                    preds = rec_idx_batch[rno, 1:end_pos[1]]
                    score = np.mean(predict_batch[rno, 1:end_pos[1]])
                preds_text = self.char_ops.decode(preds)
                rec_res[indices[rno]] = [preds_text, score]
        return rec_res
W
wangjiawei04 已提交
134 135 136 137 138


class OCRService(WebService):
    def init_rec(self):
        self.ocr_reader = OCRReader()
W
wangjiawei04 已提交
139
        self.text_recognizer = TextRecognizerHelper(global_args)
W
wangjiawei04 已提交
140 141

    def preprocess(self, feed=[], fetch=[]):
W
wangjiawei04 已提交
142
        # TODO: to handle batch rec images
W
wangjiawei04 已提交
143 144 145 146 147 148
        img_list = []
        for feed_data in feed:
            data = base64.b64decode(feed_data["image"].encode('utf8'))
            data = np.fromstring(data, np.uint8)
            im = cv2.imdecode(data, cv2.IMREAD_COLOR)
            img_list.append(im)
W
wangjiawei04 已提交
149
        feed, fetch, self.tmp_args = self.text_recognizer.preprocess(img_list)
W
wangjiawei04 已提交
150 151 152
        return feed, fetch

    def postprocess(self, feed={}, fetch=[], fetch_map=None):
W
wangjiawei04 已提交
153 154 155 156 157 158 159 160 161 162
        outputs = [fetch_map[x] for x in self.text_recognizer.fetch]
        for x in fetch_map.keys():
            if ".lod" in x:
                self.tmp_args[x] = fetch_map[x]
        rec_res = self.text_recognizer.postprocess(outputs, self.tmp_args)
        print("rec_res", rec_res)
        res = {
            "pred_text": [x[0] for x in rec_res],
            "score": [str(x[1]) for x in rec_res]
        }
W
wangjiawei04 已提交
163 164 165
        return res


W
wangjiawei04 已提交
166 167 168 169 170 171 172 173 174
if __name__ == "__main__":
    ocr_service = OCRService(name="ocr")
    ocr_service.load_model_config("ocr_rec_model")
    ocr_service.init_rec()
    if global_args.use_gpu:
        ocr_service.prepare_server(
            workdir="workdir", port=9292, device="gpu", gpuid=0)
    else:
        ocr_service.prepare_server(workdir="workdir", port=9292, device="cpu")
W
wangjiawei04 已提交
175
    ocr_service.run_debugger_service()
W
wangjiawei04 已提交
176
    ocr_service.run_web_service()