dataset_traversal.py 5.6 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
W
WenmuZhou 已提交
17
import math
W
WenmuZhou 已提交
18 19 20 21 22 23 24 25 26
import random
import numpy as np
import cv2

from ppocr.utils.utility import initial_logger
from ppocr.utils.utility import get_image_file_list

logger = initial_logger()

W
WenmuZhou 已提交
27 28 29 30 31 32 33 34 35 36 37 38
from ppocr.data.rec.img_tools import resize_norm_img, warp
from ppocr.data.cls.randaugment import RandAugment


def random_crop(img):
    img_h, img_w = img.shape[:2]
    if img_w > img_h * 4:
        w = random.randint(img_h * 2, img_w)
        i = random.randint(0, img_w - w)

        img = img[:, i:i + w, :]
    return img
W
WenmuZhou 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53


class SimpleReader(object):
    def __init__(self, params):
        if params['mode'] != 'train':
            self.num_workers = 1
        else:
            self.num_workers = params['num_workers']
        if params['mode'] != 'test':
            self.img_set_dir = params['img_set_dir']
            self.label_file_path = params['label_file_path']
        self.use_gpu = params['use_gpu']
        self.image_shape = params['image_shape']
        self.mode = params['mode']
        self.infer_img = params['infer_img']
W
WenmuZhou 已提交
54 55
        self.use_distort = params['mode'] == 'train' and params['distort']
        self.randaug = RandAugment()
W
WenmuZhou 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
        self.label_list = params['label_list']
        if "distort" in params:
            self.use_distort = params['distort'] and params['use_gpu']
            if not params['use_gpu']:
                logger.info(
                    "Distort operation can only support in GPU.Distort will be set to False."
                )
        if params['mode'] == 'train':
            self.batch_size = params['train_batch_size_per_card']
            self.drop_last = True
        else:
            self.batch_size = params['test_batch_size_per_card']
            self.drop_last = False
            self.use_distort = False

    def __call__(self, process_id):
        if self.mode != 'train':
            process_id = 0

        def get_device_num():
            if self.use_gpu:
                gpus = os.environ.get("CUDA_VISIBLE_DEVICES", 1)
                gpu_num = len(gpus.split(','))
                return gpu_num
            else:
                cpu_num = os.environ.get("CPU_NUM", 1)
                return int(cpu_num)

        def sample_iter_reader():
            if self.mode != 'train' and self.infer_img is not None:
                image_file_list = get_image_file_list(self.infer_img)
                for single_img in image_file_list:
                    img = cv2.imread(single_img)
                    if img.shape[-1] == 1 or len(list(img.shape)) == 2:
                        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
                    norm_img = resize_norm_img(img, self.image_shape)
W
WenmuZhou 已提交
92

W
WenmuZhou 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
                    norm_img = norm_img[np.newaxis, :]
                    yield norm_img
            else:
                with open(self.label_file_path, "rb") as fin:
                    label_infor_list = fin.readlines()
                img_num = len(label_infor_list)
                img_id_list = list(range(img_num))
                random.shuffle(img_id_list)
                if sys.platform == "win32" and self.num_workers != 1:
                    print("multiprocess is not fully compatible with Windows."
                          "num_workers will be 1.")
                    self.num_workers = 1
                if self.batch_size * get_device_num(
                ) * self.num_workers > img_num:
                    raise Exception(
                        "The number of the whole data ({}) is smaller than the batch_size * devices_num * num_workers ({})".
                        format(img_num, self.batch_size * get_device_num() *
                               self.num_workers))
                for img_id in range(process_id, img_num, self.num_workers):
                    label_infor = label_infor_list[img_id_list[img_id]]
                    substr = label_infor.decode('utf-8').strip("\n").split("\t")
W
WenmuZhou 已提交
114 115
                    label = self.label_list.index(substr[1])

W
WenmuZhou 已提交
116 117 118 119 120 121 122 123 124 125
                    img_path = self.img_set_dir + "/" + substr[0]
                    img = cv2.imread(img_path)
                    if img is None:
                        logger.info("{} does not exist!".format(img_path))
                        continue
                    if img.shape[-1] == 1 or len(list(img.shape)) == 2:
                        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)

                    if self.use_distort:
                        img = warp(img, 10)
W
WenmuZhou 已提交
126
                        img = self.randaug(img)
W
WenmuZhou 已提交
127 128
                    norm_img = resize_norm_img(img, self.image_shape)
                    norm_img = norm_img[np.newaxis, :]
W
WenmuZhou 已提交
129
                    yield (norm_img, label)
W
WenmuZhou 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144

        def batch_iter_reader():
            batch_outs = []
            for outs in sample_iter_reader():
                batch_outs.append(outs)
                if len(batch_outs) == self.batch_size:
                    yield batch_outs
                    batch_outs = []
            if not self.drop_last:
                if len(batch_outs) != 0:
                    yield batch_outs

        if self.infer_img is None:
            return batch_iter_reader
        return sample_iter_reader