module.py 5.8 KB
Newer Older
D
dyning 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
# -*- coding:utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import ast
import copy
import math
import os
import time

from paddle.fluid.core import AnalysisConfig, create_paddle_predictor, PaddleTensor
from paddlehub.common.logger import logger
from paddlehub.module.module import moduleinfo, runnable, serving
from PIL import Image
import cv2
import numpy as np
import paddle.fluid as fluid
import paddlehub as hub

from tools.infer.utility import draw_ocr, base64_to_cv2
from tools.infer.predict_system import TextSystem


@moduleinfo(
    name="ocr_system",
    version="1.0.0",
    summary="ocr system service",
    author="paddle-dev",
    author_email="paddle-dev@baidu.com",
    type="cv/text_recognition")
class OCRSystem(hub.Module):
D
dyning 已提交
34
    def _initialize(self, use_gpu=False):
D
dyning 已提交
35 36 37
        """
        initialize with the necessary elements
        """
D
dyning 已提交
38 39 40 41
        from ocr_system.params import read_params
        cfg = read_params()

        cfg.use_gpu = use_gpu
D
dyning 已提交
42 43 44 45 46 47
        if use_gpu:
            try:
                _places = os.environ["CUDA_VISIBLE_DEVICES"]
                int(_places[0])
                print("use gpu: ", use_gpu)
                print("CUDA_VISIBLE_DEVICES: ", _places)
D
dyning 已提交
48
                cfg.gpu_mem = 8000
D
dyning 已提交
49 50 51 52
            except:
                raise RuntimeError(
                    "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES via export CUDA_VISIBLE_DEVICES=cuda_device_id."
                )
D
dyning 已提交
53 54 55
        cfg.ir_optim = True

        self.text_sys = TextSystem(cfg)
D
dyning 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68

    def read_images(self, paths=[]):
        images = []
        for img_path in paths:
            assert os.path.isfile(
                img_path), "The {} isn't a valid file.".format(img_path)
            img = cv2.imread(img_path)
            if img is None:
                logger.info("error in loading image:{}".format(img_path))
                continue
            images.append(img)
        return images

D
dyning 已提交
69
    def predict(self,
D
dyning 已提交
70 71 72 73 74 75 76 77 78 79
                       images=[],
                       paths=[],
                       draw_img_save='ocr_result',
                       visualization=False,
                       text_thresh=0.5):
        """
        Get the chinese texts in the predicted images.
        Args:
            images (list(numpy.ndarray)): images data, shape of each is [H, W, C]. If images not paths
            paths (list[str]): The paths of images. If paths not images
D
dyning 已提交
80
            draw_img_save (str): The directory to store output images.
D
dyning 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
            visualization (bool): Whether to save image or not.
            text_thresh(float): the threshold of the recognize chinese texts' confidence
        Returns:
            res (list): The result of chinese texts and save path of images.
        """

        if images != [] and isinstance(images, list) and paths == []:
            predicted_data = images
        elif images == [] and isinstance(paths, list) and paths != []:
            predicted_data = self.read_images(paths)
        else:
            raise TypeError("The input data is inconsistent with expectations.")

        assert predicted_data != [], "There is not any image to be predicted. Please check the input data."

        cnt = 0
        all_results = []
        for img in predicted_data:
            result = {'save_path': ''}
            if img is None:
                logger.info("error in loading image")
                result['data'] = []
                all_results.append(result)
                continue
            starttime = time.time()
D
dyning 已提交
106
            dt_boxes, rec_res = self.text_sys(img)
D
dyning 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
            elapse = time.time() - starttime
            cnt += 1
            print("Predict time of image %d: %.3fs" % (cnt, elapse))
            dt_num = len(dt_boxes)
            rec_res_final = []
            for dno in range(dt_num):
                text, score = rec_res[dno]
                # if the recognized text confidence score is lower than text_thresh, then drop it
                if score >= text_thresh:
                    # text_str = "%s, %.3f" % (text, score)
                    # print(text_str)
                    rec_res_final.append(
                        {
                            'text': text,
                            'confidence': float(score),
                            'text_box_position': dt_boxes[dno].astype(np.int).tolist()
                        }
                    )
            result['data'] = rec_res_final

            if visualization:
                image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
                boxes = dt_boxes
                txts = [rec_res[i][0] for i in range(len(rec_res))]
                scores = [rec_res[i][1] for i in range(len(rec_res))]

                draw_img = draw_ocr(image, boxes, txts, scores, draw_txt=True, drop_score=0.5)
                if not os.path.exists(draw_img_save):
                    os.makedirs(draw_img_save)
                saved_name = 'ndarray_{}.jpg'.format(time.time())
                save_file_path = os.path.join(draw_img_save, saved_name)
                cv2.imwrite(save_file_path, draw_img[:, :, ::-1])
                print("The visualized image saved in {}".format(save_file_path))
                result['save_path'] = save_file_path

            all_results.append(result)
        return all_results

    @serving
    def serving_method(self, images, **kwargs):
        """
        Run as a service.
        """
        images_decode = [base64_to_cv2(image) for image in images]
D
dyning 已提交
151
        results = self.predict(images_decode, **kwargs)
D
dyning 已提交
152 153 154 155 156 157 158 159 160
        return results

   
if __name__ == '__main__':
    ocr = OCRSystem()
    image_path = [
        './doc/imgs/11.jpg',
        './doc/imgs/12.jpg',
    ]
D
dyning 已提交
161
    res = ocr.predict(paths=image_path, visualization=False)
D
dyning 已提交
162
    print(res)