kie_unet_sdmgr.yml 3.1 KB
Newer Older
L
add kie  
LDOUBLEV 已提交
1 2
Global:
  use_gpu: True
L
fix yml  
LDOUBLEV 已提交
3
  epoch_num: 60
L
add kie  
LDOUBLEV 已提交
4 5 6 7 8 9 10 11 12 13 14 15
  log_smooth_window: 20
  print_batch_step: 50
  save_model_dir: ./output/kie_5/
  save_epoch_step: 50
  # evaluation is run every 5000 iterations after the 4000th iteration
  eval_batch_step: [ 0, 80 ]
  # 1. If pretrained_model is saved in static mode, such as classification pretrained model
  #    from static branch, load_static_weights must be set as True.
  # 2. If you want to finetune the pretrained models we provide in the docs,
  #    you should set load_static_weights as False.
  load_static_weights: False
  cal_metric_during_train: False
L
fix yml  
LDOUBLEV 已提交
16
  pretrained_model: 
L
add kie  
LDOUBLEV 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
  checkpoints:
  save_inference_dir:
  use_visualdl: False
  class_path: ./train_data/wildreceipt/class_list.txt
  infer_img: ./train_data/wildreceipt/1.txt
  save_res_path: ./output/sdmgr_kie/predicts_kie.txt
  img_scale: [ 1024, 512 ]

Architecture:
  model_type: kie
  algorithm: SDMGR
  Transform:
  Backbone:
    name: Kie_backbone
  Head:
    name: SDMGRHead

Loss:
  name: SDMGRLoss

Optimizer:
  name: Adam
  beta1: 0.9
  beta2: 0.999
  lr:
    name: Piecewise
    learning_rate: 0.001
    decay_epochs: [ 60, 80, 100]
    values: [ 0.001, 0.0001, 0.00001]
    warmup_epoch: 2
  regularizer:
    name: 'L2'
    factor: 0.00005

PostProcess:
  name: None

Metric:
  name: KIEMetric
  main_indicator: hmean
57 58
  # Classes that will be ignored while computing F1 score.
  ignore_classes: [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 25]
L
add kie  
LDOUBLEV 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

Train:
  dataset:
    name: SimpleDataSet
    data_dir: ./train_data/wildreceipt/
    label_file_list: [ './train_data/wildreceipt/wildreceipt_train.txt' ]
    ratio_list: [ 1.0 ]
    transforms:
      - DecodeImage: # load image
          img_mode: RGB
          channel_first: False
      - NormalizeImage:
          scale: 1
          mean: [ 123.675, 116.28, 103.53 ]
          std: [ 58.395, 57.12, 57.375 ]
          order: 'hwc'
      - KieLabelEncode: # Class handling label
          character_dict_path: ./train_data/wildreceipt/dict.txt
      - KieResize:
      - ToCHWImage:
      - KeepKeys:
          keep_keys: [ 'image', 'relations', 'texts', 'points', 'labels', 'tag', 'shape'] # dataloader will return list in this order
  loader:
    shuffle: True
    drop_last: False
    batch_size_per_card: 4
    num_workers: 4

Eval:
  dataset:
    name: SimpleDataSet
    data_dir: ./train_data/wildreceipt
    label_file_list:
      - ./train_data/wildreceipt/wildreceipt_test.txt
      # - /paddle/data/PaddleOCR/train_data/wildreceipt/1.txt
    transforms:
      - DecodeImage: # load image
          img_mode: RGB
          channel_first: False
      - KieLabelEncode: # Class handling label
          character_dict_path: ./train_data/wildreceipt/dict.txt
      - KieResize:
      - NormalizeImage:
          scale: 1
          mean: [ 123.675, 116.28, 103.53 ]
          std: [ 58.395, 57.12, 57.375 ]
          order: 'hwc'
      - ToCHWImage:
      - KeepKeys:
          keep_keys: [ 'image', 'relations', 'texts', 'points', 'labels', 'tag', 'ori_image', 'ori_boxes', 'shape']
  loader:
    shuffle: False
    drop_last: False
    batch_size_per_card: 1 # must be 1
L
fix yml  
LDOUBLEV 已提交
113
    num_workers: 4