stn.py 5.1 KB
Newer Older
T
tink2123 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
T
tink2123 已提交
14 15 16 17
"""
This code is refer from:
https://github.com/ayumiymk/aster.pytorch/blob/master/lib/models/stn_head.py
"""
T
tink2123 已提交
18 19 20 21 22 23 24 25 26 27
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import paddle
from paddle import nn, ParamAttr
from paddle.nn import functional as F
import numpy as np

T
tink2123 已提交
28 29
from .tps_spatial_transformer import TPSSpatialTransformer

T
tink2123 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113

def conv3x3_block(in_channels, out_channels, stride=1):
    n = 3 * 3 * out_channels
    w = math.sqrt(2. / n)
    conv_layer = nn.Conv2D(
        in_channels,
        out_channels,
        kernel_size=3,
        stride=stride,
        padding=1,
        weight_attr=nn.initializer.Normal(
            mean=0.0, std=w),
        bias_attr=nn.initializer.Constant(0))
    block = nn.Sequential(conv_layer, nn.BatchNorm2D(out_channels), nn.ReLU())
    return block


class STN(nn.Layer):
    def __init__(self, in_channels, num_ctrlpoints, activation='none'):
        super(STN, self).__init__()
        self.in_channels = in_channels
        self.num_ctrlpoints = num_ctrlpoints
        self.activation = activation
        self.stn_convnet = nn.Sequential(
            conv3x3_block(in_channels, 32),  #32x64
            nn.MaxPool2D(
                kernel_size=2, stride=2),
            conv3x3_block(32, 64),  #16x32
            nn.MaxPool2D(
                kernel_size=2, stride=2),
            conv3x3_block(64, 128),  # 8*16
            nn.MaxPool2D(
                kernel_size=2, stride=2),
            conv3x3_block(128, 256),  # 4*8
            nn.MaxPool2D(
                kernel_size=2, stride=2),
            conv3x3_block(256, 256),  # 2*4,
            nn.MaxPool2D(
                kernel_size=2, stride=2),
            conv3x3_block(256, 256))  # 1*2
        self.stn_fc1 = nn.Sequential(
            nn.Linear(
                2 * 256,
                512,
                weight_attr=nn.initializer.Normal(0, 0.001),
                bias_attr=nn.initializer.Constant(0)),
            nn.BatchNorm1D(512),
            nn.ReLU())
        fc2_bias = self.init_stn()
        self.stn_fc2 = nn.Linear(
            512,
            num_ctrlpoints * 2,
            weight_attr=nn.initializer.Constant(0.0),
            bias_attr=nn.initializer.Assign(fc2_bias))

    def init_stn(self):
        margin = 0.01
        sampling_num_per_side = int(self.num_ctrlpoints / 2)
        ctrl_pts_x = np.linspace(margin, 1. - margin, sampling_num_per_side)
        ctrl_pts_y_top = np.ones(sampling_num_per_side) * margin
        ctrl_pts_y_bottom = np.ones(sampling_num_per_side) * (1 - margin)
        ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
        ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
        ctrl_points = np.concatenate(
            [ctrl_pts_top, ctrl_pts_bottom], axis=0).astype(np.float32)
        if self.activation == 'none':
            pass
        elif self.activation == 'sigmoid':
            ctrl_points = -np.log(1. / ctrl_points - 1.)
        ctrl_points = paddle.to_tensor(ctrl_points)
        fc2_bias = paddle.reshape(
            ctrl_points, shape=[ctrl_points.shape[0] * ctrl_points.shape[1]])
        return fc2_bias

    def forward(self, x):
        x = self.stn_convnet(x)
        batch_size, _, h, w = x.shape
        x = paddle.reshape(x, shape=(batch_size, -1))
        img_feat = self.stn_fc1(x)
        x = self.stn_fc2(0.1 * img_feat)
        if self.activation == 'sigmoid':
            x = F.sigmoid(x)
        x = paddle.reshape(x, shape=[-1, self.num_ctrlpoints, 2])
        return img_feat, x
T
tink2123 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130


class STN_ON(nn.Layer):
    def __init__(self, in_channels, tps_inputsize, tps_outputsize,
                 num_control_points, tps_margins, stn_activation):
        super(STN_ON, self).__init__()
        self.tps = TPSSpatialTransformer(
            output_image_size=tuple(tps_outputsize),
            num_control_points=num_control_points,
            margins=tuple(tps_margins))
        self.stn_head = STN(in_channels=in_channels,
                            num_ctrlpoints=num_control_points,
                            activation=stn_activation)
        self.tps_inputsize = tps_inputsize
        self.out_channels = in_channels

    def forward(self, image):
T
Topdu 已提交
131 132
        if len(image.shape)==5:
            image = image.reshape([0, image.shape[-3], image.shape[-2], image.shape[-1]])
T
tink2123 已提交
133 134 135 136 137
        stn_input = paddle.nn.functional.interpolate(
            image, self.tps_inputsize, mode="bilinear", align_corners=True)
        stn_img_feat, ctrl_points = self.stn_head(stn_input)
        x, _ = self.tps(image, ctrl_points)
        return x