rec_srn_all_head.py 8.7 KB
Newer Older
T
tink2123 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math

import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
#from .rec_seq_encoder import SequenceEncoder
#from ..common_functions import get_para_bias_attr
import numpy as np
from .self_attention.model import wrap_encoder
from .self_attention.model import wrap_encoder_forFeature
gradient_clip = 10



class SRNPredict(object):
    def __init__(self, params):
        super(SRNPredict, self).__init__()
        self.char_num = params['char_num']
        self.max_length = params['max_text_length']

        self.num_heads = params['num_heads']
        self.num_encoder_TUs = params['num_encoder_TUs']
        self.num_decoder_TUs = params['num_decoder_TUs']
        self.hidden_dims = params['hidden_dims']


    def pvam(self, inputs, others):

        b, c, h, w = inputs.shape
        conv_features = fluid.layers.reshape(x=inputs, shape=[-1, c, h * w])
        conv_features = fluid.layers.transpose(x=conv_features, perm=[0, 2, 1])

        #===== Transformer encoder =====
        b, t, c = conv_features.shape
        encoder_word_pos = others["encoder_word_pos"]
        gsrm_word_pos = others["gsrm_word_pos"]


        enc_inputs = [conv_features, encoder_word_pos, None]
        word_features = wrap_encoder_forFeature(src_vocab_size=-1,
                 max_length=t,
                 n_layer=self.num_encoder_TUs,
                 n_head=self.num_heads,
                 d_key= int(self.hidden_dims / self.num_heads),
                 d_value= int(self.hidden_dims / self.num_heads),
                 d_model=self.hidden_dims,
                 d_inner_hid=self.hidden_dims,
                 prepostprocess_dropout=0.1,
                 attention_dropout=0.1,
                 relu_dropout=0.1,
                 preprocess_cmd="n",
                 postprocess_cmd="da",
                 weight_sharing=True,
                 enc_inputs=enc_inputs,
                )
        fluid.clip.set_gradient_clip(fluid.clip.GradientClipByValue(gradient_clip))

        #===== Parallel Visual Attention Module =====
        b, t, c = word_features.shape

        word_features = fluid.layers.fc(word_features, c, num_flatten_dims=2) 
        word_features_ = fluid.layers.reshape(word_features, [-1, 1, t, c])
        word_features_ = fluid.layers.expand(word_features_, [1, self.max_length, 1, 1])
        word_pos_feature = fluid.layers.embedding(gsrm_word_pos, [self.max_length, c]) 
        word_pos_ = fluid.layers.reshape(word_pos_feature, [-1, self.max_length, 1, c])
        word_pos_ = fluid.layers.expand(word_pos_, [1, 1, t, 1])
        temp = fluid.layers.elementwise_add(word_features_, word_pos_, act='tanh')

        attention_weight = fluid.layers.fc(input=temp, size=1, num_flatten_dims=3, bias_attr=False) 
        attention_weight = fluid.layers.reshape(x=attention_weight, shape=[-1, self.max_length, t])    
        attention_weight = fluid.layers.softmax(input=attention_weight, axis=-1) 

        pvam_features = fluid.layers.matmul(attention_weight, word_features)#[b, max_length, c]
        
        return pvam_features
        
    def gsrm(self, pvam_features, others):

        #===== GSRM Visual-to-semantic embedding block =====
        b, t, c = pvam_features.shape
        word_out = fluid.layers.fc(input=fluid.layers.reshape(pvam_features, [-1, c]),
                                  size=self.char_num,
                                  act="softmax")
        #word_out.stop_gradient = True
        word_ids = fluid.layers.argmax(word_out, axis=1)
        word_ids.stop_gradient = True
        word_ids = fluid.layers.reshape(x=word_ids, shape=[-1, t, 1])

        #===== GSRM Semantic reasoning block =====
        """
        This module is achieved through bi-transformers, 
        ngram_feature1 is the froward one, ngram_fetaure2 is the backward one
        """
        pad_idx = self.char_num
        gsrm_word_pos = others["gsrm_word_pos"]
        gsrm_slf_attn_bias1 = others["gsrm_slf_attn_bias1"]
        gsrm_slf_attn_bias2 = others["gsrm_slf_attn_bias2"]

        def prepare_bi(word_ids):
            """
            prepare bi for gsrm
            word1 for forward; word2 for backward
            """
            word1 = fluid.layers.cast(word_ids, "float32")
            word1 = fluid.layers.pad(word1, [0, 0, 1, 0, 0, 0], pad_value=1.0 * pad_idx)
            word1 = fluid.layers.cast(word1, "int64")
            word1 = word1[:, :-1, :]
            word2 = word_ids
            return word1, word2

        word1, word2 = prepare_bi(word_ids)
        word1.stop_gradient = True
        word2.stop_gradient = True
        enc_inputs_1 = [word1, gsrm_word_pos, gsrm_slf_attn_bias1]
        enc_inputs_2 = [word2, gsrm_word_pos, gsrm_slf_attn_bias2]

        gsrm_feature1 = wrap_encoder(src_vocab_size=self.char_num + 1,
                 max_length=self.max_length,
                 n_layer=self.num_decoder_TUs,
                 n_head=self.num_heads,
                 d_key=int(self.hidden_dims / self.num_heads),
                 d_value=int(self.hidden_dims / self.num_heads),
                 d_model=self.hidden_dims,
                 d_inner_hid=self.hidden_dims,
                 prepostprocess_dropout=0.1,
                 attention_dropout=0.1,
                 relu_dropout=0.1,
                 preprocess_cmd="n",
                 postprocess_cmd="da",
                 weight_sharing=True,
                 enc_inputs=enc_inputs_1,
                )
        gsrm_feature2 = wrap_encoder(src_vocab_size=self.char_num + 1,
                 max_length=self.max_length,
                 n_layer=self.num_decoder_TUs,
                 n_head=self.num_heads,
                 d_key=int(self.hidden_dims / self.num_heads),
                 d_value=int(self.hidden_dims / self.num_heads),
                 d_model=self.hidden_dims,
                 d_inner_hid=self.hidden_dims,
                 prepostprocess_dropout=0.1,
                 attention_dropout=0.1,
                 relu_dropout=0.1,
                 preprocess_cmd="n",
                 postprocess_cmd="da",
                 weight_sharing=True,
                 enc_inputs=enc_inputs_2,
                )
        gsrm_feature2 = fluid.layers.pad(gsrm_feature2, [0, 0, 0, 1, 0, 0], pad_value=0.)
        gsrm_feature2 = gsrm_feature2[:, 1:, ]
        gsrm_features = gsrm_feature1 + gsrm_feature2

        b, t, c = gsrm_features.shape

        gsrm_out = fluid.layers.matmul(
            x=gsrm_features,
            y=fluid.default_main_program().global_block().var("src_word_emb_table"),
            transpose_y=True)
        b,t,c = gsrm_out.shape
        gsrm_out = fluid.layers.softmax(input=fluid.layers.reshape(gsrm_out, [-1, c]))

        return gsrm_features, word_out, gsrm_out

    def vsfd(self, pvam_features, gsrm_features):

        #===== Visual-Semantic Fusion Decoder Module =====
        b, t, c1 = pvam_features.shape
        b, t, c2 = gsrm_features.shape
        combine_features_ = fluid.layers.concat([pvam_features, gsrm_features], axis=2)
        img_comb_features_ = fluid.layers.reshape(x=combine_features_, shape=[-1, c1 + c2])
        img_comb_features_map = fluid.layers.fc(input=img_comb_features_, size=c1, act="sigmoid")
        img_comb_features_map = fluid.layers.reshape(x=img_comb_features_map, shape=[-1, t, c1])    
        combine_features = img_comb_features_map * pvam_features + (1.0 - img_comb_features_map) * gsrm_features    
        img_comb_features = fluid.layers.reshape(x=combine_features, shape=[-1, c1])

        fc_out = fluid.layers.fc(input=img_comb_features,
                                 size=self.char_num,
                                 act="softmax")
        return fc_out


    def __call__(self, inputs, others, mode=None):

        pvam_features = self.pvam(inputs, others)
        gsrm_features, word_out, gsrm_out = self.gsrm(pvam_features, others)
        final_out = self.vsfd(pvam_features, gsrm_features)

        _, decoded_out = fluid.layers.topk(input=final_out, k=1)
        predicts = {'predict': final_out, 'decoded_out': decoded_out, 
                    'word_out': word_out, 'gsrm_out': gsrm_out}

        return predicts