core.go 6.5 KB
Newer Older
L
LKKlein 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
package ocr

import (
	"bytes"
	"encoding/json"
	"errors"
	"image"
	"image/color"
	"io"
	"log"
	"math"
	"net/http"
	"path"
	"path/filepath"
	"sort"
	"strings"

	"github.com/LKKlein/gocv"
L
LKKlein 已提交
19
	"github.com/PaddlePaddle/PaddleOCR/deploy/paddleocr-go/paddle"
L
LKKlein 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
)

type PaddleModel struct {
	predictor *paddle.Predictor
	input     *paddle.ZeroCopyTensor
	outputs   []*paddle.ZeroCopyTensor

	useGPU      bool
	deviceID    int
	initGPUMem  int
	numThreads  int
	useMKLDNN   bool
	useTensorRT bool
	useIROptim  bool
}

func NewPaddleModel(args map[string]interface{}) *PaddleModel {
	return &PaddleModel{
		useGPU:      getBool(args, "use_gpu", false),
		deviceID:    getInt(args, "gpu_id", 0),
		initGPUMem:  getInt(args, "gpu_mem", 1000),
		numThreads:  getInt(args, "num_cpu_threads", 6),
		useMKLDNN:   getBool(args, "enable_mkldnn", false),
		useTensorRT: getBool(args, "use_tensorrt", false),
		useIROptim:  getBool(args, "ir_optim", true),
	}
}

func (model *PaddleModel) LoadModel(modelDir string) {
	config := paddle.NewAnalysisConfig()
	config.DisableGlogInfo()

	config.SetModel(modelDir+"/model", modelDir+"/params")
	if model.useGPU {
		config.EnableUseGpu(model.initGPUMem, model.deviceID)
	} else {
		config.DisableGpu()
		config.SetCpuMathLibraryNumThreads(model.numThreads)
		if model.useMKLDNN {
			config.EnableMkldnn()
		}
	}

	// config.EnableMemoryOptim()
	if model.useIROptim {
		config.SwitchIrOptim(true)
	}

	// false for zero copy tensor
	config.SwitchUseFeedFetchOps(false)
	config.SwitchSpecifyInputNames(true)

	model.predictor = paddle.NewPredictor(config)
	model.input = model.predictor.GetInputTensors()[0]
	model.outputs = model.predictor.GetOutputTensors()
}

type OCRText struct {
	BBox  [][]int `json:"bbox"`
	Text  string  `json:"text"`
	Score float64 `json:"score"`
}

type TextPredictSystem struct {
	detector *DBDetector
	cls      *TextClassifier
	rec      *TextRecognizer
}

func NewTextPredictSystem(args map[string]interface{}) *TextPredictSystem {
	sys := &TextPredictSystem{
		detector: NewDBDetector(getString(args, "det_model_dir", ""), args),
		rec:      NewTextRecognizer(getString(args, "rec_model_dir", ""), args),
	}
	if getBool(args, "use_angle_cls", false) {
		sys.cls = NewTextClassifier(getString(args, "cls_model_dir", ""), args)
	}
	return sys
}

func (sys *TextPredictSystem) sortBoxes(boxes [][][]int) [][][]int {
	sort.Slice(boxes, func(i, j int) bool {
		if boxes[i][0][1] < boxes[j][0][1] {
			return true
		}
		if boxes[i][0][1] > boxes[j][0][1] {
			return false
		}
		return boxes[i][0][0] < boxes[j][0][0]
	})

	for i := 0; i < len(boxes)-1; i++ {
		if math.Abs(float64(boxes[i+1][0][1]-boxes[i][0][1])) < 10 && boxes[i+1][0][0] < boxes[i][0][0] {
			boxes[i], boxes[i+1] = boxes[i+1], boxes[i]
		}
	}
	return boxes
}

func (sys *TextPredictSystem) getRotateCropImage(img gocv.Mat, box [][]int) gocv.Mat {
	cropW := int(math.Sqrt(math.Pow(float64(box[0][0]-box[1][0]), 2) + math.Pow(float64(box[0][1]-box[1][1]), 2)))
	cropH := int(math.Sqrt(math.Pow(float64(box[0][0]-box[3][0]), 2) + math.Pow(float64(box[0][1]-box[3][1]), 2)))
	ptsstd := make([]image.Point, 4)
	ptsstd[0] = image.Pt(0, 0)
	ptsstd[1] = image.Pt(cropW, 0)
	ptsstd[2] = image.Pt(cropW, cropH)
	ptsstd[3] = image.Pt(0, cropH)

	points := make([]image.Point, 4)
	points[0] = image.Pt(box[0][0], box[0][1])
	points[1] = image.Pt(box[1][0], box[1][1])
	points[2] = image.Pt(box[2][0], box[2][1])
	points[3] = image.Pt(box[3][0], box[3][1])

	M := gocv.GetPerspectiveTransform(points, ptsstd)
	defer M.Close()
	dstimg := gocv.NewMat()
	gocv.WarpPerspectiveWithParams(img, &dstimg, M, image.Pt(cropW, cropH),
		gocv.InterpolationCubic, gocv.BorderReplicate, color.RGBA{0, 0, 0, 0})

	if float64(dstimg.Rows()) >= float64(dstimg.Cols())*1.5 {
		srcCopy := gocv.NewMat()
		gocv.Transpose(dstimg, &srcCopy)
		defer dstimg.Close()
		gocv.Flip(srcCopy, &srcCopy, 0)
		return srcCopy
	}
	return dstimg
}

func (sys *TextPredictSystem) Run(img gocv.Mat) []OCRText {
	srcimg := gocv.NewMat()
	img.CopyTo(&srcimg)
	boxes := sys.detector.Run(img)
	if len(boxes) == 0 {
		return nil
	}

	boxes = sys.sortBoxes(boxes)
	cropimages := make([]gocv.Mat, len(boxes))
	for i := 0; i < len(boxes); i++ {
		tmpbox := make([][]int, len(boxes[i]))
		for j := 0; j < len(tmpbox); j++ {
			tmpbox[j] = make([]int, len(boxes[i][j]))
			copy(tmpbox[j], boxes[i][j])
		}
		cropimg := sys.getRotateCropImage(srcimg, tmpbox)
		cropimages[i] = cropimg
	}
	if sys.cls != nil {
		cropimages = sys.cls.Run(cropimages)
	}
	recResult := sys.rec.Run(cropimages, boxes)
	return recResult
}

type OCRSystem struct {
	args map[string]interface{}
	tps  *TextPredictSystem
}

func NewOCRSystem(confFile string, a map[string]interface{}) *OCRSystem {
	args, err := ReadYaml(confFile)
	if err != nil {
		log.Printf("Read config file %v failed! Please check. err: %v\n", confFile, err)
		log.Println("Program will use default config.")
		args = defaultArgs
	}
	for k, v := range a {
		args[k] = v
	}
	return &OCRSystem{
		args: args,
		tps:  NewTextPredictSystem(args),
	}
}

func (ocr *OCRSystem) StartServer(port string) {
	http.HandleFunc("/ocr", ocr.predictHandler)
	log.Println("OCR Server has been started on port :", port)
	err := http.ListenAndServe(":"+port, nil)
	if err != nil {
		log.Panicf("http error! error: %v\n", err)
	}
}

func (ocr *OCRSystem) predictHandler(w http.ResponseWriter, r *http.Request) {
	if r.Method != "POST" {
		w.Write([]byte(errors.New("post method only").Error()))
		return
	}
	r.ParseMultipartForm(32 << 20)
	var buf bytes.Buffer
	file, header, err := r.FormFile("image")
	if err != nil {
		w.Write([]byte(err.Error()))
		return
	}
	defer file.Close()
	ext := strings.ToLower(path.Ext(header.Filename))
	if ext != ".jpg" && ext != ".png" {
		w.Write([]byte(errors.New("only support image endswith jpg/png").Error()))
		return
	}

	io.Copy(&buf, file)
	img, err2 := gocv.IMDecode(buf.Bytes(), gocv.IMReadColor)
	if err2 != nil {
		w.Write([]byte(err2.Error()))
		return
	}
	result := ocr.PredictOneImage(img)
	if output, err3 := json.Marshal(result); err3 != nil {
		w.Write([]byte(err3.Error()))
	} else {
		w.Write(output)
	}
}

func (ocr *OCRSystem) PredictOneImage(img gocv.Mat) []OCRText {
	return ocr.tps.Run(img)
}

func (ocr *OCRSystem) PredictDirImages(dirname string) map[string][]OCRText {
	if dirname == "" {
		return nil
	}

	imgs, _ := filepath.Glob(dirname + "/*.jpg")
	tmpimgs, _ := filepath.Glob(dirname + "/*.png")
	imgs = append(imgs, tmpimgs...)
	results := make(map[string][]OCRText, len(imgs))
	for i := 0; i < len(imgs); i++ {
		imgname := imgs[i]
		img := ReadImage(imgname)
		res := ocr.PredictOneImage(img)
		results[imgname] = res
	}
	return results
}