optimizer.py 5.6 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
littletomatodonkey's avatar
littletomatodonkey 已提交
17
import math
L
LDOUBLEV 已提交
18
import paddle.fluid as fluid
littletomatodonkey's avatar
littletomatodonkey 已提交
19
from paddle.fluid.regularizer import L2Decay
littletomatodonkey's avatar
littletomatodonkey 已提交
20 21
from paddle.fluid.layers.learning_rate_scheduler import _decay_step_counter
import paddle.fluid.layers.ops as ops
littletomatodonkey's avatar
littletomatodonkey 已提交
22

T
tink2123 已提交
23 24 25
from ppocr.utils.utility import initial_logger

logger = initial_logger()
L
LDOUBLEV 已提交
26 27


littletomatodonkey's avatar
littletomatodonkey 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
def cosine_decay_with_warmup(learning_rate,
                             step_each_epoch,
                             epochs=500,
                             warmup_minibatch=1000):
    """Applies cosine decay to the learning rate.
    lr = 0.05 * (math.cos(epoch * (math.pi / 120)) + 1)
    decrease lr for every mini-batch and start with warmup.
    """
    global_step = _decay_step_counter()
    lr = fluid.layers.tensor.create_global_var(
        shape=[1],
        value=0.0,
        dtype='float32',
        persistable=True,
        name="learning_rate")

    warmup_minibatch = fluid.layers.fill_constant(
        shape=[1],
        dtype='float32',
        value=float(warmup_minibatch),
        force_cpu=True)

    with fluid.layers.control_flow.Switch() as switch:
        with switch.case(global_step < warmup_minibatch):
            decayed_lr = learning_rate * (1.0 * global_step / warmup_minibatch)
            fluid.layers.tensor.assign(input=decayed_lr, output=lr)
        with switch.default():
            decayed_lr = learning_rate * \
                (ops.cos((global_step - warmup_minibatch) * (math.pi / (epochs * step_each_epoch))) + 1)/2
            fluid.layers.tensor.assign(input=decayed_lr, output=lr)
    return lr


L
LDOUBLEV 已提交
61 62 63 64 65 66 67 68 69 70 71
def AdamDecay(params, parameter_list=None):
    """
    define optimizer function
    args:
        params(dict): the super parameters
        parameter_list (list): list of Variable names to update to minimize loss
    return:
    """
    base_lr = params['base_lr']
    beta1 = params['beta1']
    beta2 = params['beta2']
littletomatodonkey's avatar
littletomatodonkey 已提交
72 73
    l2_decay = params.get("l2_decay", 0.0)

T
tink2123 已提交
74
    if 'decay' in params:
littletomatodonkey's avatar
littletomatodonkey 已提交
75 76 77
        supported_decay_mode = [
            "cosine_decay", "cosine_decay_warmup", "piecewise_decay"
        ]
T
tink2123 已提交
78 79
        params = params['decay']
        decay_mode = params['function']
L
licx 已提交
80 81 82
        assert decay_mode in supported_decay_mode, "Supported decay mode is {}, but got {}".format(
            supported_decay_mode, decay_mode)

T
tink2123 已提交
83
        if decay_mode == "cosine_decay":
L
licx 已提交
84 85
            step_each_epoch = params['step_each_epoch']
            total_epoch = params['total_epoch']
T
tink2123 已提交
86 87 88 89
            base_lr = fluid.layers.cosine_decay(
                learning_rate=base_lr,
                step_each_epoch=step_each_epoch,
                epochs=total_epoch)
littletomatodonkey's avatar
littletomatodonkey 已提交
90 91 92 93 94 95 96 97 98
        elif decay_mode == "cosine_decay_warmup":
            step_each_epoch = params['step_each_epoch']
            total_epoch = params['total_epoch']
            warmup_minibatch = params.get("warmup_minibatch", 1000)
            base_lr = cosine_decay_with_warmup(
                learning_rate=base_lr,
                step_each_epoch=step_each_epoch,
                epochs=total_epoch,
                warmup_minibatch=warmup_minibatch)
L
licx 已提交
99 100 101 102 103 104 105 106 107
        elif decay_mode == "piecewise_decay":
            boundaries = params["boundaries"]
            decay_rate = params["decay_rate"]
            values = [
                base_lr * decay_rate**idx
                for idx in range(len(boundaries) + 1)
            ]
            base_lr = fluid.layers.piecewise_decay(boundaries, values)

L
LDOUBLEV 已提交
108 109 110 111
    optimizer = fluid.optimizer.Adam(
        learning_rate=base_lr,
        beta1=beta1,
        beta2=beta2,
littletomatodonkey's avatar
littletomatodonkey 已提交
112
        regularization=L2Decay(regularization_coeff=l2_decay),
L
LDOUBLEV 已提交
113 114
        parameter_list=parameter_list)
    return optimizer
L
licx 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153


def RMSProp(params, parameter_list=None):
    """
    define optimizer function
    args:
        params(dict): the super parameters
        parameter_list (list): list of Variable names to update to minimize loss
    return:
    """
    base_lr = params.get("base_lr", 0.001)
    l2_decay = params.get("l2_decay", 0.00005)

    if 'decay' in params:
        supported_decay_mode = ["cosine_decay", "piecewise_decay"]
        params = params['decay']
        decay_mode = params['function']
        assert decay_mode in supported_decay_mode, "Supported decay mode is {}, but got {}".format(
            supported_decay_mode, decay_mode)

        if decay_mode == "cosine_decay":
            step_each_epoch = params['step_each_epoch']
            total_epoch = params['total_epoch']
            base_lr = fluid.layers.cosine_decay(
                learning_rate=base_lr,
                step_each_epoch=step_each_epoch,
                epochs=total_epoch)
        elif decay_mode == "piecewise_decay":
            boundaries = params["boundaries"]
            decay_rate = params["decay_rate"]
            values = [
                base_lr * decay_rate**idx
                for idx in range(len(boundaries) + 1)
            ]
            base_lr = fluid.layers.piecewise_decay(boundaries, values)

    optimizer = fluid.optimizer.RMSProp(
        learning_rate=base_lr,
        regularization=fluid.regularizer.L2Decay(regularization_coeff=l2_decay))
littletomatodonkey's avatar
littletomatodonkey 已提交
154 155

    return optimizer