make_border_map.py 6.3 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WenmuZhou 已提交
14 15 16 17
"""
This code is refer from:
https://github.com/WenmuZhou/DBNet.pytorch/blob/master/data_loader/modules/make_border_map.py
"""
W
WenmuZhou 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import numpy as np
import cv2

np.seterr(divide='ignore', invalid='ignore')
import pyclipper
from shapely.geometry import Polygon
import sys
import warnings

warnings.simplefilter("ignore")

__all__ = ['MakeBorderMap']


class MakeBorderMap(object):
    def __init__(self,
                 shrink_ratio=0.4,
                 thresh_min=0.3,
                 thresh_max=0.7,
                 **kwargs):
        self.shrink_ratio = shrink_ratio
        self.thresh_min = thresh_min
        self.thresh_max = thresh_max

D
dyning 已提交
48
    def __call__(self, data):
W
WenmuZhou 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173

        img = data['image']
        text_polys = data['polys']
        ignore_tags = data['ignore_tags']

        canvas = np.zeros(img.shape[:2], dtype=np.float32)
        mask = np.zeros(img.shape[:2], dtype=np.float32)

        for i in range(len(text_polys)):
            if ignore_tags[i]:
                continue
            self.draw_border_map(text_polys[i], canvas, mask=mask)
        canvas = canvas * (self.thresh_max - self.thresh_min) + self.thresh_min

        data['threshold_map'] = canvas
        data['threshold_mask'] = mask
        return data

    def draw_border_map(self, polygon, canvas, mask):
        polygon = np.array(polygon)
        assert polygon.ndim == 2
        assert polygon.shape[1] == 2

        polygon_shape = Polygon(polygon)
        if polygon_shape.area <= 0:
            return
        distance = polygon_shape.area * (
            1 - np.power(self.shrink_ratio, 2)) / polygon_shape.length
        subject = [tuple(l) for l in polygon]
        padding = pyclipper.PyclipperOffset()
        padding.AddPath(subject, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)

        padded_polygon = np.array(padding.Execute(distance)[0])
        cv2.fillPoly(mask, [padded_polygon.astype(np.int32)], 1.0)

        xmin = padded_polygon[:, 0].min()
        xmax = padded_polygon[:, 0].max()
        ymin = padded_polygon[:, 1].min()
        ymax = padded_polygon[:, 1].max()
        width = xmax - xmin + 1
        height = ymax - ymin + 1

        polygon[:, 0] = polygon[:, 0] - xmin
        polygon[:, 1] = polygon[:, 1] - ymin

        xs = np.broadcast_to(
            np.linspace(
                0, width - 1, num=width).reshape(1, width), (height, width))
        ys = np.broadcast_to(
            np.linspace(
                0, height - 1, num=height).reshape(height, 1), (height, width))

        distance_map = np.zeros(
            (polygon.shape[0], height, width), dtype=np.float32)
        for i in range(polygon.shape[0]):
            j = (i + 1) % polygon.shape[0]
            absolute_distance = self._distance(xs, ys, polygon[i], polygon[j])
            distance_map[i] = np.clip(absolute_distance / distance, 0, 1)
        distance_map = distance_map.min(axis=0)

        xmin_valid = min(max(0, xmin), canvas.shape[1] - 1)
        xmax_valid = min(max(0, xmax), canvas.shape[1] - 1)
        ymin_valid = min(max(0, ymin), canvas.shape[0] - 1)
        ymax_valid = min(max(0, ymax), canvas.shape[0] - 1)
        canvas[ymin_valid:ymax_valid + 1, xmin_valid:xmax_valid + 1] = np.fmax(
            1 - distance_map[ymin_valid - ymin:ymax_valid - ymax + height,
                             xmin_valid - xmin:xmax_valid - xmax + width],
            canvas[ymin_valid:ymax_valid + 1, xmin_valid:xmax_valid + 1])

    def _distance(self, xs, ys, point_1, point_2):
        '''
        compute the distance from point to a line
        ys: coordinates in the first axis
        xs: coordinates in the second axis
        point_1, point_2: (x, y), the end of the line
        '''
        height, width = xs.shape[:2]
        square_distance_1 = np.square(xs - point_1[0]) + np.square(ys - point_1[
            1])
        square_distance_2 = np.square(xs - point_2[0]) + np.square(ys - point_2[
            1])
        square_distance = np.square(point_1[0] - point_2[0]) + np.square(
            point_1[1] - point_2[1])

        cosin = (square_distance - square_distance_1 - square_distance_2) / (
            2 * np.sqrt(square_distance_1 * square_distance_2))
        square_sin = 1 - np.square(cosin)
        square_sin = np.nan_to_num(square_sin)
        result = np.sqrt(square_distance_1 * square_distance_2 * square_sin /
                         square_distance)

        result[cosin <
               0] = np.sqrt(np.fmin(square_distance_1, square_distance_2))[cosin
                                                                           < 0]
        # self.extend_line(point_1, point_2, result)
        return result

    def extend_line(self, point_1, point_2, result, shrink_ratio):
        ex_point_1 = (int(
            round(point_1[0] + (point_1[0] - point_2[0]) * (1 + shrink_ratio))),
                      int(
                          round(point_1[1] + (point_1[1] - point_2[1]) * (
                              1 + shrink_ratio))))
        cv2.line(
            result,
            tuple(ex_point_1),
            tuple(point_1),
            4096.0,
            1,
            lineType=cv2.LINE_AA,
            shift=0)
        ex_point_2 = (int(
            round(point_2[0] + (point_2[0] - point_1[0]) * (1 + shrink_ratio))),
                      int(
                          round(point_2[1] + (point_2[1] - point_1[1]) * (
                              1 + shrink_ratio))))
        cv2.line(
            result,
            tuple(ex_point_2),
            tuple(point_2),
            4096.0,
            1,
            lineType=cv2.LINE_AA,
            shift=0)
        return ex_point_1, ex_point_2