train_ser.py 8.8 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
文幕地方's avatar
add re  
文幕地方 已提交
16 17 18 19 20 21
import sys

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))

littletomatodonkey's avatar
littletomatodonkey 已提交
22
import random
Z
zhoujun 已提交
23
import time
littletomatodonkey's avatar
littletomatodonkey 已提交
24 25 26 27 28 29 30 31 32
import copy
import logging

import argparse
import paddle
import numpy as np
from seqeval.metrics import classification_report, f1_score, precision_score, recall_score
from paddlenlp.transformers import LayoutXLMModel, LayoutXLMTokenizer, LayoutXLMForTokenClassification
from xfun import XFUNDataset
Z
zhoujun 已提交
33 34
from utils import parse_args, get_bio_label_maps, print_arguments, set_seed
from eval_ser import evaluate
文幕地方's avatar
add re  
文幕地方 已提交
35
from ppocr.utils.logging import get_logger
littletomatodonkey's avatar
littletomatodonkey 已提交
36 37 38 39


def train(args):
    os.makedirs(args.output_dir, exist_ok=True)
文幕地方's avatar
add re  
文幕地方 已提交
40 41
    logger = get_logger(log_file=os.path.join(args.output_dir, "train.log"))
    print_arguments(args, logger)
littletomatodonkey's avatar
littletomatodonkey 已提交
42 43 44 45 46 47 48 49 50

    label2id_map, id2label_map = get_bio_label_maps(args.label_map_path)
    pad_token_label_id = paddle.nn.CrossEntropyLoss().ignore_index

    # dist mode
    if paddle.distributed.get_world_size() > 1:
        paddle.distributed.init_parallel_env()

    tokenizer = LayoutXLMTokenizer.from_pretrained(args.model_name_or_path)
Z
zhoujun 已提交
51 52 53 54 55 56 57 58 59
    if not args.resume:
        model = LayoutXLMModel.from_pretrained(args.model_name_or_path)
        model = LayoutXLMForTokenClassification(
            model, num_classes=len(label2id_map), dropout=None)
        logger.info('train from scratch')
    else:
        logger.info('resume from {}'.format(args.model_name_or_path))
        model = LayoutXLMForTokenClassification.from_pretrained(
            args.model_name_or_path)
littletomatodonkey's avatar
littletomatodonkey 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

    # dist mode
    if paddle.distributed.get_world_size() > 1:
        model = paddle.DataParallel(model)

    train_dataset = XFUNDataset(
        tokenizer,
        data_dir=args.train_data_dir,
        label_path=args.train_label_path,
        label2id_map=label2id_map,
        img_size=(224, 224),
        pad_token_label_id=pad_token_label_id,
        contains_re=False,
        add_special_ids=False,
        return_attention_mask=True,
        load_mode='all')
Z
zhoujun 已提交
76 77 78 79 80 81 82 83 84 85 86
    eval_dataset = XFUNDataset(
        tokenizer,
        data_dir=args.eval_data_dir,
        label_path=args.eval_label_path,
        label2id_map=label2id_map,
        img_size=(224, 224),
        pad_token_label_id=pad_token_label_id,
        contains_re=False,
        add_special_ids=False,
        return_attention_mask=True,
        load_mode='all')
littletomatodonkey's avatar
littletomatodonkey 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100

    train_sampler = paddle.io.DistributedBatchSampler(
        train_dataset, batch_size=args.per_gpu_train_batch_size, shuffle=True)

    args.train_batch_size = args.per_gpu_train_batch_size * max(
        1, paddle.distributed.get_world_size())

    train_dataloader = paddle.io.DataLoader(
        train_dataset,
        batch_sampler=train_sampler,
        num_workers=0,
        use_shared_memory=True,
        collate_fn=None, )

Z
zhoujun 已提交
101 102 103 104 105 106 107
    eval_dataloader = paddle.io.DataLoader(
        eval_dataset,
        batch_size=args.per_gpu_eval_batch_size,
        num_workers=0,
        use_shared_memory=True,
        collate_fn=None, )

littletomatodonkey's avatar
littletomatodonkey 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
    t_total = len(train_dataloader) * args.num_train_epochs

    # build linear decay with warmup lr sch
    lr_scheduler = paddle.optimizer.lr.PolynomialDecay(
        learning_rate=args.learning_rate,
        decay_steps=t_total,
        end_lr=0.0,
        power=1.0)
    if args.warmup_steps > 0:
        lr_scheduler = paddle.optimizer.lr.LinearWarmup(
            lr_scheduler,
            args.warmup_steps,
            start_lr=0,
            end_lr=args.learning_rate, )

    optimizer = paddle.optimizer.AdamW(
        learning_rate=lr_scheduler,
        parameters=model.parameters(),
        epsilon=args.adam_epsilon,
        weight_decay=args.weight_decay)

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d",
                args.per_gpu_train_batch_size)
    logger.info(
        "  Total train batch size (w. parallel, distributed) = %d",
        args.train_batch_size * paddle.distributed.get_world_size(), )
    logger.info("  Total optimization steps = %d", t_total)

    global_step = 0
    tr_loss = 0.0
Z
zhoujun 已提交
142
    set_seed(ags.seed)
littletomatodonkey's avatar
littletomatodonkey 已提交
143 144
    best_metrics = None

Z
zhoujun 已提交
145 146 147 148 149 150 151
    train_reader_cost = 0.0
    train_run_cost = 0.0
    total_samples = 0
    reader_start = time.time()

    print_step = 1
    model.train()
littletomatodonkey's avatar
littletomatodonkey 已提交
152 153
    for epoch_id in range(args.num_train_epochs):
        for step, batch in enumerate(train_dataloader):
Z
zhoujun 已提交
154 155 156
            train_reader_cost += time.time() - reader_start

            train_start = time.time()
littletomatodonkey's avatar
littletomatodonkey 已提交
157
            outputs = model(**batch)
Z
zhoujun 已提交
158 159
            train_run_cost += time.time() - train_start

littletomatodonkey's avatar
littletomatodonkey 已提交
160 161 162 163 164 165 166 167 168
            # model outputs are always tuple in ppnlp (see doc)
            loss = outputs[0]
            loss = loss.mean()
            loss.backward()
            tr_loss += loss.item()
            optimizer.step()
            lr_scheduler.step()  # Update learning rate schedule
            optimizer.clear_grad()
            global_step += 1
Z
zhoujun 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
            total_samples += batch['image'].shape[0]

            if step % print_step == 0:
                logger.info(
                    "epoch: [{}/{}], iter: [{}/{}], global_step:{}, train loss: {:.6f}, lr: {:.6f}, avg_reader_cost: {:.5f} sec, avg_batch_cost: {:.5f} sec, avg_samples: {:.5f}, ips: {:.5f} images/sec".
                    format(epoch_id, args.num_train_epochs, step,
                           len(train_dataloader), global_step,
                           loss.numpy()[0],
                           lr_scheduler.get_lr(), train_reader_cost /
                           print_step, (train_reader_cost + train_run_cost) /
                           print_step, total_samples / print_step, total_samples
                           / (train_reader_cost + train_run_cost)))

                train_reader_cost = 0.0
                train_run_cost = 0.0
                total_samples = 0
littletomatodonkey's avatar
littletomatodonkey 已提交
185 186 187 188 189 190 191

            if (paddle.distributed.get_rank() == 0 and args.eval_steps > 0 and
                    global_step % args.eval_steps == 0):
                # Log metrics
                # Only evaluate when single GPU otherwise metrics may not average well
                if paddle.distributed.get_rank(
                ) == 0 and args.evaluate_during_training:
Z
zhoujun 已提交
192 193 194
                    results, _ = evaluate(
                        args, model, tokenizer, eval_dataloader, label2id_map,
                        id2label_map, pad_token_label_id, logger)
littletomatodonkey's avatar
littletomatodonkey 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215

                    if best_metrics is None or results["f1"] >= best_metrics[
                            "f1"]:
                        best_metrics = copy.deepcopy(results)
                        output_dir = os.path.join(args.output_dir, "best_model")
                        os.makedirs(output_dir, exist_ok=True)
                        if paddle.distributed.get_rank() == 0:
                            model.save_pretrained(output_dir)
                            tokenizer.save_pretrained(output_dir)
                            paddle.save(
                                args,
                                os.path.join(output_dir, "training_args.bin"))
                            logger.info("Saving model checkpoint to %s",
                                        output_dir)

                    logger.info("[epoch {}/{}][iter: {}/{}] results: {}".format(
                        epoch_id, args.num_train_epochs, step,
                        len(train_dataloader), results))
                    if best_metrics is not None:
                        logger.info("best metrics: {}".format(best_metrics))

Z
zhoujun 已提交
216
            if paddle.distributed.get_rank() == 0:
littletomatodonkey's avatar
littletomatodonkey 已提交
217
                # Save model checkpoint
Z
zhoujun 已提交
218
                output_dir = os.path.join(args.output_dir, "latest_model")
littletomatodonkey's avatar
littletomatodonkey 已提交
219 220 221 222 223 224 225
                os.makedirs(output_dir, exist_ok=True)
                if paddle.distributed.get_rank() == 0:
                    model.save_pretrained(output_dir)
                    tokenizer.save_pretrained(output_dir)
                    paddle.save(args,
                                os.path.join(output_dir, "training_args.bin"))
                    logger.info("Saving model checkpoint to %s", output_dir)
Z
zhoujun 已提交
226
            reader_start = time.time()
littletomatodonkey's avatar
littletomatodonkey 已提交
227 228 229 230 231 232
    return global_step, tr_loss / global_step


if __name__ == "__main__":
    args = parse_args()
    train(args)