train_re.py 8.6 KB
Newer Older
文幕地方's avatar
add re  
文幕地方 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))

import random
Z
zhoujun 已提交
23
import time
文幕地方's avatar
add re  
文幕地方 已提交
24 25 26 27 28 29
import numpy as np
import paddle

from paddlenlp.transformers import LayoutXLMTokenizer, LayoutXLMModel, LayoutXLMForRelationExtraction

from xfun import XFUNDataset
Z
zhoujun 已提交
30
from utils import parse_args, get_bio_label_maps, print_arguments, set_seed
文幕地方's avatar
add re  
文幕地方 已提交
31
from data_collator import DataCollator
Z
zhoujun 已提交
32
from eval_re import evaluate
文幕地方's avatar
add re  
文幕地方 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

from ppocr.utils.logging import get_logger


def train(args):
    logger = get_logger(log_file=os.path.join(args.output_dir, "train.log"))
    print_arguments(args, logger)

    # Added here for reproducibility (even between python 2 and 3)
    set_seed(args.seed)

    label2id_map, id2label_map = get_bio_label_maps(args.label_map_path)
    pad_token_label_id = paddle.nn.CrossEntropyLoss().ignore_index

    # dist mode
    if paddle.distributed.get_world_size() > 1:
        paddle.distributed.init_parallel_env()

    tokenizer = LayoutXLMTokenizer.from_pretrained(args.model_name_or_path)
Z
zhoujun 已提交
52 53 54 55 56 57 58 59
    if not args.resume:
        model = LayoutXLMModel.from_pretrained(args.model_name_or_path)
        model = LayoutXLMForRelationExtraction(model, dropout=None)
        logger.info('train from scratch')
    else:
        logger.info('resume from {}'.format(args.model_name_or_path))
        model = LayoutXLMForRelationExtraction.from_pretrained(
            args.model_name_or_path)
文幕地方's avatar
add re  
文幕地方 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147

    # dist mode
    if paddle.distributed.get_world_size() > 1:
        model = paddle.distributed.DataParallel(model)

    train_dataset = XFUNDataset(
        tokenizer,
        data_dir=args.train_data_dir,
        label_path=args.train_label_path,
        label2id_map=label2id_map,
        img_size=(224, 224),
        max_seq_len=args.max_seq_length,
        pad_token_label_id=pad_token_label_id,
        contains_re=True,
        add_special_ids=False,
        return_attention_mask=True,
        load_mode='all')

    eval_dataset = XFUNDataset(
        tokenizer,
        data_dir=args.eval_data_dir,
        label_path=args.eval_label_path,
        label2id_map=label2id_map,
        img_size=(224, 224),
        max_seq_len=args.max_seq_length,
        pad_token_label_id=pad_token_label_id,
        contains_re=True,
        add_special_ids=False,
        return_attention_mask=True,
        load_mode='all')

    train_sampler = paddle.io.DistributedBatchSampler(
        train_dataset, batch_size=args.per_gpu_train_batch_size, shuffle=True)
    args.train_batch_size = args.per_gpu_train_batch_size * \
                            max(1, paddle.distributed.get_world_size())
    train_dataloader = paddle.io.DataLoader(
        train_dataset,
        batch_sampler=train_sampler,
        num_workers=8,
        use_shared_memory=True,
        collate_fn=DataCollator())

    eval_dataloader = paddle.io.DataLoader(
        eval_dataset,
        batch_size=args.per_gpu_eval_batch_size,
        num_workers=8,
        shuffle=False,
        collate_fn=DataCollator())

    t_total = len(train_dataloader) * args.num_train_epochs

    # build linear decay with warmup lr sch
    lr_scheduler = paddle.optimizer.lr.PolynomialDecay(
        learning_rate=args.learning_rate,
        decay_steps=t_total,
        end_lr=0.0,
        power=1.0)
    if args.warmup_steps > 0:
        lr_scheduler = paddle.optimizer.lr.LinearWarmup(
            lr_scheduler,
            args.warmup_steps,
            start_lr=0,
            end_lr=args.learning_rate, )
    grad_clip = paddle.nn.ClipGradByNorm(clip_norm=10)
    optimizer = paddle.optimizer.Adam(
        learning_rate=args.learning_rate,
        parameters=model.parameters(),
        epsilon=args.adam_epsilon,
        grad_clip=grad_clip,
        weight_decay=args.weight_decay)

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = {}".format(len(train_dataset)))
    logger.info("  Num Epochs = {}".format(args.num_train_epochs))
    logger.info("  Instantaneous batch size per GPU = {}".format(
        args.per_gpu_train_batch_size))
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = {}".
        format(args.train_batch_size * paddle.distributed.get_world_size()))
    logger.info("  Total optimization steps = {}".format(t_total))

    global_step = 0
    model.clear_gradients()
    train_dataloader_len = len(train_dataloader)
    best_metirc = {'f1': 0}
    model.train()

Z
zhoujun 已提交
148 149 150 151 152 153 154
    train_reader_cost = 0.0
    train_run_cost = 0.0
    total_samples = 0
    reader_start = time.time()

    print_step = 1

文幕地方's avatar
add re  
文幕地方 已提交
155 156
    for epoch in range(int(args.num_train_epochs)):
        for step, batch in enumerate(train_dataloader):
Z
zhoujun 已提交
157 158
            train_reader_cost += time.time() - reader_start
            train_start = time.time()
文幕地方's avatar
add re  
文幕地方 已提交
159
            outputs = model(**batch)
Z
zhoujun 已提交
160
            train_run_cost += time.time() - train_start
文幕地方's avatar
add re  
文幕地方 已提交
161 162 163 164 165 166 167 168 169 170
            # model outputs are always tuple in ppnlp (see doc)
            loss = outputs['loss']
            loss = loss.mean()

            loss.backward()
            optimizer.step()
            optimizer.clear_grad()
            # lr_scheduler.step()  # Update learning rate schedule

            global_step += 1
Z
zhoujun 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
            total_samples += batch['image'].shape[0]

            if step % print_step == 0:
                logger.info(
                    "epoch: [{}/{}], iter: [{}/{}], global_step:{}, train loss: {:.6f}, lr: {:.6f}, avg_reader_cost: {:.5f} sec, avg_batch_cost: {:.5f} sec, avg_samples: {:.5f}, ips: {:.5f} images/sec".
                    format(epoch, args.num_train_epochs, step,
                           train_dataloader_len, global_step,
                           np.mean(loss.numpy()),
                           optimizer.get_lr(), train_reader_cost / print_step, (
                               train_reader_cost + train_run_cost) / print_step,
                           total_samples / print_step, total_samples / (
                               train_reader_cost + train_run_cost)))

                train_reader_cost = 0.0
                train_run_cost = 0.0
                total_samples = 0
文幕地方's avatar
add re  
文幕地方 已提交
187 188 189 190 191 192 193

            if (paddle.distributed.get_rank() == 0 and args.eval_steps > 0 and
                    global_step % args.eval_steps == 0):
                # Log metrics
                if (paddle.distributed.get_rank() == 0 and args.
                        evaluate_during_training):  # Only evaluate when single GPU otherwise metrics may not average well
                    results = evaluate(model, eval_dataloader, logger)
Z
zhoujun 已提交
194
                    if results['f1'] >= best_metirc['f1']:
文幕地方's avatar
add re  
文幕地方 已提交
195
                        best_metirc = results
Z
zhoujun 已提交
196
                        output_dir = os.path.join(args.output_dir, "best_model")
文幕地方's avatar
add re  
文幕地方 已提交
197 198 199 200 201 202 203 204 205 206 207
                        os.makedirs(output_dir, exist_ok=True)
                        model.save_pretrained(output_dir)
                        tokenizer.save_pretrained(output_dir)
                        paddle.save(args,
                                    os.path.join(output_dir,
                                                 "training_args.bin"))
                        logger.info("Saving model checkpoint to {}".format(
                            output_dir))
                    logger.info("eval results: {}".format(results))
                    logger.info("best_metirc: {}".format(best_metirc))

Z
zhoujun 已提交
208
            if paddle.distributed.get_rank() == 0:
文幕地方's avatar
add re  
文幕地方 已提交
209
                # Save model checkpoint
Z
zhoujun 已提交
210
                output_dir = os.path.join(args.output_dir, "latest_model")
文幕地方's avatar
add re  
文幕地方 已提交
211 212 213 214 215 216 217 218
                os.makedirs(output_dir, exist_ok=True)
                if paddle.distributed.get_rank() == 0:
                    model.save_pretrained(output_dir)
                    tokenizer.save_pretrained(output_dir)
                    paddle.save(args,
                                os.path.join(output_dir, "training_args.bin"))
                    logger.info("Saving model checkpoint to {}".format(
                        output_dir))
Z
zhoujun 已提交
219
            reader_start = time.time()
文幕地方's avatar
add re  
文幕地方 已提交
220 221 222 223 224 225 226
    logger.info("best_metirc: {}".format(best_metirc))


if __name__ == "__main__":
    args = parse_args()
    os.makedirs(args.output_dir, exist_ok=True)
    train(args)