quickstart_en.md 11.6 KB
Newer Older
文幕地方's avatar
文幕地方 已提交
1
- [PaddleOCR Quick Start](#paddleocr-quick-start)
文幕地方's avatar
文幕地方 已提交
2 3 4
  - [1. Installation](#1-installation)
    - [1.1 Install PaddlePaddle](#11-install-paddlepaddle)
    - [1.2 Install PaddleOCR Whl Package](#12-install-paddleocr-whl-package)
文幕地方's avatar
文幕地方 已提交
5 6 7 8 9 10 11 12
  - [2. Easy-to-Use](#2-easy-to-use)
    - [2.1 Use by Command Line](#21-use-by-command-line)
      - [2.1.1 Chinese and English Model](#211-chinese-and-english-model)
      - [2.1.2 Multi-language Model](#212-multi-language-model)
      - [2.1.3 Layout Analysis](#213-layout-analysis)
    - [2.2 Use by Code](#22-use-by-code)
      - [2.2.1 Chinese & English Model and Multilingual Model](#221-chinese--english-model-and-multilingual-model)
      - [2.2.2 Layout Analysis](#222-layout-analysis)
文幕地方's avatar
文幕地方 已提交
13
  - [3. Summary](#3-summary)
littletomatodonkey's avatar
littletomatodonkey 已提交
14

qq_25193841's avatar
qq_25193841 已提交
15
# PaddleOCR Quick Start
littletomatodonkey's avatar
littletomatodonkey 已提交
16 17


qq_25193841's avatar
qq_25193841 已提交
18
<a name="1nstallation"></a>
littletomatodonkey's avatar
littletomatodonkey 已提交
19

qq_25193841's avatar
qq_25193841 已提交
20
## 1. Installation
littletomatodonkey's avatar
littletomatodonkey 已提交
21

qq_25193841's avatar
qq_25193841 已提交
22
<a name="11-install-paddlepaddle"></a>
W
WenmuZhou 已提交
23

qq_25193841's avatar
qq_25193841 已提交
24 25 26
### 1.1 Install PaddlePaddle

> If you do not have a Python environment, please refer to [Environment Preparation](./environment_en.md).
littletomatodonkey's avatar
littletomatodonkey 已提交
27

qq_25193841's avatar
qq_25193841 已提交
28
- If you have CUDA 9 or CUDA 10 installed on your machine, please run the following command to install
littletomatodonkey's avatar
littletomatodonkey 已提交
29

qq_25193841's avatar
qq_25193841 已提交
30 31 32 33 34 35 36 37 38
  ```bash
  python3 -m pip install paddlepaddle-gpu -i https://mirror.baidu.com/pypi/simple
  ```

- If you have no available GPU on your machine, please run the following command to install the CPU version

  ```bash
  python3 -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
  ```
littletomatodonkey's avatar
littletomatodonkey 已提交
39

qq_25193841's avatar
qq_25193841 已提交
40
For more software version requirements, please refer to the instructions in [Installation Document](https://www.paddlepaddle.org.cn/install/quick) for operation.
W
WenmuZhou 已提交
41

qq_25193841's avatar
qq_25193841 已提交
42 43 44
<a name="12-install-paddleocr-whl-package"></a>

### 1.2 Install PaddleOCR Whl Package
qq_25193841's avatar
qq_25193841 已提交
45 46 47

```bash
pip install "paddleocr>=2.0.1" # Recommend to use version 2.0.1+
littletomatodonkey's avatar
littletomatodonkey 已提交
48 49
```

qq_25193841's avatar
qq_25193841 已提交
50
- **For windows users:** If you getting this error `OSError: [WinError 126] The specified module could not be found` when you install shapely on windows. Please try to download Shapely whl file [here](http://www.lfd.uci.edu/~gohlke/pythonlibs/#shapely).
qq_25193841's avatar
qq_25193841 已提交
51

qq_25193841's avatar
qq_25193841 已提交
52
  Reference: [Solve shapely installation on windows](https://stackoverflow.com/questions/44398265/install-shapely-oserror-winerror-126-the-specified-module-could-not-be-found)
qq_25193841's avatar
qq_25193841 已提交
53

qq_25193841's avatar
qq_25193841 已提交
54
- **For layout analysis users**, run the following command to install **Layout-Parser**
littletomatodonkey's avatar
littletomatodonkey 已提交
55

qq_25193841's avatar
qq_25193841 已提交
56 57 58 59 60 61 62 63 64 65
  ```bash
  pip3 install -U https://paddleocr.bj.bcebos.com/whl/layoutparser-0.0.0-py3-none-any.whl
  ```

<a name="2-easy-to-use"></a>

## 2. Easy-to-Use

<a name="21-use-by-command-line"></a>

66
### 2.1 Use by Command Line
qq_25193841's avatar
qq_25193841 已提交
67

qq_25193841's avatar
qq_25193841 已提交
68
PaddleOCR provides a series of test images, click [here](https://paddleocr.bj.bcebos.com/dygraph_v2.1/ppocr_img.zip) to download, and then switch to the corresponding directory in the terminal
qq_25193841's avatar
qq_25193841 已提交
69 70

```bash
qq_25193841's avatar
qq_25193841 已提交
71
cd /path/to/ppocr_img
littletomatodonkey's avatar
littletomatodonkey 已提交
72
```
qq_25193841's avatar
qq_25193841 已提交
73

qq_25193841's avatar
qq_25193841 已提交
74
If you do not use the provided test image, you can replace the following `--image_dir` parameter with the corresponding test image path
qq_25193841's avatar
qq_25193841 已提交
75

qq_25193841's avatar
qq_25193841 已提交
76
<a name="211-english-and-chinese-model"></a>
qq_25193841's avatar
qq_25193841 已提交
77

qq_25193841's avatar
qq_25193841 已提交
78
#### 2.1.1 Chinese and English Model
qq_25193841's avatar
qq_25193841 已提交
79

80
* Detection, direction classification and recognition: set the parameter`--use_gpu false` to disable the gpu device
qq_25193841's avatar
qq_25193841 已提交
81

qq_25193841's avatar
qq_25193841 已提交
82
  ```bash
83
  paddleocr --image_dir ./imgs_en/img_12.jpg --use_angle_cls true --lang en --use_gpu false
qq_25193841's avatar
qq_25193841 已提交
84
  ```
littletomatodonkey's avatar
littletomatodonkey 已提交
85

qq_25193841's avatar
qq_25193841 已提交
86
  Output will be a list, each item contains bounding box, text and recognition confidence
littletomatodonkey's avatar
littletomatodonkey 已提交
87

qq_25193841's avatar
qq_25193841 已提交
88 89 90 91 92 93 94 95 96 97 98 99
  ```bash
  [[[442.0, 173.0], [1169.0, 173.0], [1169.0, 225.0], [442.0, 225.0]], ['ACKNOWLEDGEMENTS', 0.99283075]]
  [[[393.0, 340.0], [1207.0, 342.0], [1207.0, 389.0], [393.0, 387.0]], ['We would like to thank all the designers and', 0.9357758]]
  [[[399.0, 398.0], [1204.0, 398.0], [1204.0, 433.0], [399.0, 433.0]], ['contributors whohave been involved in the', 0.9592447]]
  ......
  ```

* Only detection: set `--rec` to `false`

  ```bash
  paddleocr --image_dir ./imgs_en/img_12.jpg --rec false
  ```
qq_25193841's avatar
qq_25193841 已提交
100

qq_25193841's avatar
qq_25193841 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
  Output will be a list, each item only contains bounding box

  ```bash
  [[756.0, 812.0], [805.0, 812.0], [805.0, 830.0], [756.0, 830.0]]
  [[820.0, 803.0], [1085.0, 801.0], [1085.0, 836.0], [820.0, 838.0]]
  [[393.0, 801.0], [715.0, 805.0], [715.0, 839.0], [393.0, 836.0]]
  ......
  ```

* Only recognition: set `--det` to `false`

  ```bash
  paddleocr --image_dir ./imgs_words_en/word_10.png --det false --lang en
  ```

  Output will be a list, each item contains text and recognition confidence

  ```bash
  ['PAIN', 0.990372]
  ```

122
If you need to use the 2.0 model, please specify the parameter `--version PP-OCR`, paddleocr uses the 2.1 model by default(`--versioin PP-OCRv2`). More whl package usage can be found in [whl package](./whl_en.md)
qq_25193841's avatar
qq_25193841 已提交
123
<a name="212-multi-language-model"></a>
qq_25193841's avatar
qq_25193841 已提交
124 125 126

#### 2.1.2 Multi-language Model

qq_25193841's avatar
qq_25193841 已提交
127
Paddleocr currently supports 80 languages, which can be switched by modifying the `--lang` parameter.
qq_25193841's avatar
qq_25193841 已提交
128 129 130

``` bash
paddleocr --image_dir ./doc/imgs_en/254.jpg --lang=en
littletomatodonkey's avatar
littletomatodonkey 已提交
131 132
```

qq_25193841's avatar
qq_25193841 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
<div align="center">
    <img src="../imgs_en/254.jpg" width="300" height="600">
    <img src="../imgs_results/multi_lang/img_02.jpg" width="600" height="600">
</div>
The result is a list, each item contains a text box, text and recognition confidence

```text
[('PHO CAPITAL', 0.95723116), [[66.0, 50.0], [327.0, 44.0], [327.0, 76.0], [67.0, 82.0]]]
[('107 State Street', 0.96311164), [[72.0, 90.0], [451.0, 84.0], [452.0, 116.0], [73.0, 121.0]]]
[('Montpelier Vermont', 0.97389287), [[69.0, 132.0], [501.0, 126.0], [501.0, 158.0], [70.0, 164.0]]]
[('8022256183', 0.99810505), [[71.0, 175.0], [363.0, 170.0], [364.0, 202.0], [72.0, 207.0]]]
[('REG 07-24-201706:59 PM', 0.93537045), [[73.0, 299.0], [653.0, 281.0], [654.0, 318.0], [74.0, 336.0]]]
[('045555', 0.99346405), [[509.0, 331.0], [651.0, 325.0], [652.0, 356.0], [511.0, 362.0]]]
[('CT1', 0.9988654), [[535.0, 367.0], [654.0, 367.0], [654.0, 406.0], [535.0, 406.0]]]
......
```
littletomatodonkey's avatar
littletomatodonkey 已提交
149

qq_25193841's avatar
qq_25193841 已提交
150
Commonly used multilingual abbreviations include
littletomatodonkey's avatar
littletomatodonkey 已提交
151

qq_25193841's avatar
qq_25193841 已提交
152 153 154 155 156
| Language            | Abbreviation |      | Language | Abbreviation |      | Language | Abbreviation |
| ------------------- | ------------ | ---- | -------- | ------------ | ---- | -------- | ------------ |
| Chinese & English   | ch           |      | French   | fr           |      | Japanese | japan        |
| English             | en           |      | German   | german       |      | Korean   | korean       |
| Chinese Traditional | chinese_cht  |      | Italian  | it           |      | Russian  | ru           |
littletomatodonkey's avatar
littletomatodonkey 已提交
157

qq_25193841's avatar
qq_25193841 已提交
158
A list of all languages and their corresponding abbreviations can be found in [Multi-Language Model Tutorial](./multi_languages_en.md)
qq_25193841's avatar
qq_25193841 已提交
159
<a name="213-layoutAnalysis"></a>
littletomatodonkey's avatar
littletomatodonkey 已提交
160

qq_25193841's avatar
qq_25193841 已提交
161 162 163
#### 2.1.3 Layout Analysis

Layout analysis refers to the division of 5 types of areas of the document, including text, title, list, picture and table. For the first three types of regions, directly use the OCR model to complete the text detection and recognition of the corresponding regions, and save the results in txt. For the table area, after the table structuring process, the table picture is converted into an Excel file of the same table style. The picture area will be individually cropped into an image.
littletomatodonkey's avatar
littletomatodonkey 已提交
164

qq_25193841's avatar
qq_25193841 已提交
165 166 167 168
To use the layout analysis function of PaddleOCR, you need to specify `--type=structure`

```bash
paddleocr --image_dir=../doc/table/1.png --type=structure
littletomatodonkey's avatar
littletomatodonkey 已提交
169 170
```

qq_25193841's avatar
qq_25193841 已提交
171
- **Results Format**
qq_25193841's avatar
qq_25193841 已提交
172

qq_25193841's avatar
qq_25193841 已提交
173
  The returned results of PP-Structure is a list composed of a dict, an example is as follows
qq_25193841's avatar
qq_25193841 已提交
174

qq_25193841's avatar
qq_25193841 已提交
175 176 177 178 179 180 181 182 183
  ```shell
  [
    {   'type': 'Text',
        'bbox': [34, 432, 345, 462],
        'res': ([[36.0, 437.0, 341.0, 437.0, 341.0, 446.0, 36.0, 447.0], [41.0, 454.0, 125.0, 453.0, 125.0, 459.0, 41.0, 460.0]],
                  [('Tigure-6. The performance of CNN and IPT models using difforen', 0.90060663), ('Tent  ', 0.465441)])
    }
  ]
  ```
qq_25193841's avatar
qq_25193841 已提交
184

qq_25193841's avatar
qq_25193841 已提交
185
  The description of each field in dict is as follows
qq_25193841's avatar
qq_25193841 已提交
186

qq_25193841's avatar
qq_25193841 已提交
187 188 189 190 191
  | Parameter | Description                                                  |
  | --------- | ------------------------------------------------------------ |
  | type      | Type of image area                                           |
  | bbox      | The coordinates of the image area in the original image, respectively [left upper x, left upper y, right bottom x, right bottom y] |
  | res       | OCR or table recognition result of image area。<br> Table: HTML string of the table; <br> OCR: A tuple containing the detection coordinates and recognition results of each single line of text |
littletomatodonkey's avatar
littletomatodonkey 已提交
192

qq_25193841's avatar
qq_25193841 已提交
193
- **Parameter Description:**
littletomatodonkey's avatar
littletomatodonkey 已提交
194

qq_25193841's avatar
qq_25193841 已提交
195 196 197 198 199
  | Parameter       | Description                                                  | Default value                                |
  | --------------- | ------------------------------------------------------------ | -------------------------------------------- |
  | output          | The path where excel and recognition results are saved       | ./output/table                               |
  | table_max_len   | The long side of the image is resized in table structure model | 488                                          |
  | table_model_dir | inference model path of table structure model                | None                                         |
文幕地方's avatar
文幕地方 已提交
200
  | table_char_dict_path | dict path of table structure model                           | ../ppocr/utils/dict/table_structure_dict.txt |
qq_25193841's avatar
qq_25193841 已提交
201

qq_25193841's avatar
qq_25193841 已提交
202
<a name="22-use-by-code"></a>
qq_25193841's avatar
qq_25193841 已提交
203

qq_25193841's avatar
qq_25193841 已提交
204 205
### 2.2 Use by Code
<a name="221-chinese---english-model-and-multilingual-model"></a>
qq_25193841's avatar
qq_25193841 已提交
206

qq_25193841's avatar
qq_25193841 已提交
207
#### 2.2.1 Chinese & English Model and Multilingual Model
qq_25193841's avatar
qq_25193841 已提交
208

qq_25193841's avatar
qq_25193841 已提交
209
* detection, angle classification and recognition:
qq_25193841's avatar
qq_25193841 已提交
210

qq_25193841's avatar
qq_25193841 已提交
211 212 213 214 215 216 217
```python
from paddleocr import PaddleOCR,draw_ocr
# Paddleocr supports Chinese, English, French, German, Korean and Japanese.
# You can set the parameter `lang` as `ch`, `en`, `fr`, `german`, `korean`, `japan`
# to switch the language model in order.
ocr = PaddleOCR(use_angle_cls=True, lang='en') # need to run only once to download and load model into memory
img_path = './imgs_en/img_12.jpg'
qq_25193841's avatar
qq_25193841 已提交
218 219 220 221 222
result = ocr.ocr(img_path, cls=True)
for line in result:
    print(line)


qq_25193841's avatar
qq_25193841 已提交
223 224
# draw result
from PIL import Image
qq_25193841's avatar
qq_25193841 已提交
225 226 227 228
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
qq_25193841's avatar
qq_25193841 已提交
229
im_show = draw_ocr(image, boxes, txts, scores, font_path='./fonts/simfang.ttf')
qq_25193841's avatar
qq_25193841 已提交
230 231
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
littletomatodonkey's avatar
littletomatodonkey 已提交
232
```
qq_25193841's avatar
qq_25193841 已提交
233

qq_25193841's avatar
qq_25193841 已提交
234
Output will be a list, each item contains bounding box, text and recognition confidence
qq_25193841's avatar
qq_25193841 已提交
235 236

```bash
qq_25193841's avatar
qq_25193841 已提交
237 238 239
[[[442.0, 173.0], [1169.0, 173.0], [1169.0, 225.0], [442.0, 225.0]], ['ACKNOWLEDGEMENTS', 0.99283075]]
[[[393.0, 340.0], [1207.0, 342.0], [1207.0, 389.0], [393.0, 387.0]], ['We would like to thank all the designers and', 0.9357758]]
[[[399.0, 398.0], [1204.0, 398.0], [1204.0, 433.0], [399.0, 433.0]], ['contributors whohave been involved in the', 0.9592447]]
qq_25193841's avatar
qq_25193841 已提交
240
......
littletomatodonkey's avatar
littletomatodonkey 已提交
241 242
```

qq_25193841's avatar
qq_25193841 已提交
243
Visualization of results
littletomatodonkey's avatar
littletomatodonkey 已提交
244

qq_25193841's avatar
qq_25193841 已提交
245
<div align="center">
qq_25193841's avatar
qq_25193841 已提交
246
    <img src="../imgs_results/whl/12_det_rec.jpg" width="800">
qq_25193841's avatar
qq_25193841 已提交
247
</div>
qq_25193841's avatar
qq_25193841 已提交
248
<a name="222-layoutAnalysis"></a>
littletomatodonkey's avatar
littletomatodonkey 已提交
249

qq_25193841's avatar
qq_25193841 已提交
250
#### 2.2.2 Layout Analysis
qq_25193841's avatar
qq_25193841 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276

```python
import os
import cv2
from paddleocr import PPStructure,draw_structure_result,save_structure_res

table_engine = PPStructure(show_log=True)

save_folder = './output/table'
img_path = './table/1.png'
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder,os.path.basename(img_path).split('.')[0])

for line in result:
    line.pop('img')
    print(line)

from PIL import Image

font_path = './fonts/simfang.ttf'
image = Image.open(img_path).convert('RGB')
im_show = draw_structure_result(image, result,font_path=font_path)
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```
qq_25193841's avatar
qq_25193841 已提交
277 278 279 280 281 282 283 284

<a name="3"></a>

## 3. Summary

In this section, you have mastered the use of PaddleOCR whl packages and obtained results.

PaddleOCR is a rich and practical OCR tool library that opens up the whole process of data, model training, compression and inference deployment, so in the [next section](./paddleOCR_overview_en.md) we will first introduce you to the overview of PaddleOCR, and then clone the PaddleOCR project to start the application journey of PaddleOCR.