rec_aster_head.py 9.0 KB
Newer Older
T
tink2123 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import sys

import paddle
from paddle import nn
from paddle.nn import functional as F


class AsterHead(nn.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 sDim,
                 attDim,
                 max_len_labels,
                 time_step=25,
                 beam_width=5,
                 **kwargs):
        super(AsterHead, self).__init__()
        self.num_classes = out_channels
        self.in_planes = in_channels
        self.sDim = sDim
        self.attDim = attDim
        self.max_len_labels = max_len_labels
        self.decoder = AttentionRecognitionHead(in_channels, out_channels, sDim,
                                                attDim, max_len_labels)
        self.time_step = time_step
        self.embeder = Embedding(self.time_step, in_channels)
        self.beam_width = beam_width

    def forward(self, x, targets=None, embed=None):
        return_dict = {}
        embedding_vectors = self.embeder(x)
        rec_targets, rec_lengths = targets

        if self.training:
            rec_pred = self.decoder([x, rec_targets, rec_lengths],
                                    embedding_vectors)
            return_dict['rec_pred'] = rec_pred
            return_dict['embedding_vectors'] = embedding_vectors
        else:
            rec_pred, rec_pred_scores = self.decoder.beam_search(
                x, self.beam_width, self.eos, embedding_vectors)
            return_dict['rec_pred'] = rec_pred
            return_dict['rec_pred_scores'] = rec_pred_scores
            return_dict['embedding_vectors'] = embedding_vectors

        return return_dict


class Embedding(nn.Layer):
    def __init__(self, in_timestep, in_planes, mid_dim=4096, embed_dim=300):
        super(Embedding, self).__init__()
        self.in_timestep = in_timestep
        self.in_planes = in_planes
        self.embed_dim = embed_dim
        self.mid_dim = mid_dim
        self.eEmbed = nn.Linear(
            in_timestep * in_planes,
            self.embed_dim)  # Embed encoder output to a word-embedding like

    def forward(self, x):
        x = paddle.reshape(x, [paddle.shape(x)[0], -1])
        x = self.eEmbed(x)
        return x


class AttentionRecognitionHead(nn.Layer):
    """
  input: [b x 16 x 64 x in_planes]
  output: probability sequence: [b x T x num_classes]
  """

    def __init__(self, in_channels, out_channels, sDim, attDim, max_len_labels):
        super(AttentionRecognitionHead, self).__init__()
        self.num_classes = out_channels  # this is the output classes. So it includes the <EOS>.
        self.in_planes = in_channels
        self.sDim = sDim
        self.attDim = attDim
        self.max_len_labels = max_len_labels

        self.decoder = DecoderUnit(
            sDim=sDim, xDim=in_channels, yDim=self.num_classes, attDim=attDim)

    def forward(self, x, embed):
        x, targets, lengths = x
        batch_size = paddle.shape(x)[0]
        # Decoder
        state = self.decoder.get_initial_state(embed)
        outputs = []

        for i in range(max(lengths)):
            if i == 0:
                y_prev = paddle.full(
                    shape=[batch_size], fill_value=self.num_classes)
            else:
                y_prev = targets[:, i - 1]

            output, state = self.decoder(x, state, y_prev)
            outputs.append(output)
        outputs = paddle.concat([_.unsqueeze(1) for _ in outputs], 1)
        return outputs

    # inference stage.
    def sample(self, x):
        x, _, _ = x
        batch_size = x.size(0)
        # Decoder
        state = paddle.zeros([1, batch_size, self.sDim])

        predicted_ids, predicted_scores = [], []
        for i in range(self.max_len_labels):
            if i == 0:
                y_prev = paddle.full(
                    shape=[batch_size], fill_value=self.num_classes)
            else:
                y_prev = predicted

            output, state = self.decoder(x, state, y_prev)
            output = F.softmax(output, axis=1)
            score, predicted = output.max(1)
            predicted_ids.append(predicted.unsqueeze(1))
            predicted_scores.append(score.unsqueeze(1))
        predicted_ids = paddle.concat([predicted_ids, 1])
        predicted_scores = paddle.concat([predicted_scores, 1])
        # return predicted_ids.squeeze(), predicted_scores.squeeze()
        return predicted_ids, predicted_scores


class AttentionUnit(nn.Layer):
    def __init__(self, sDim, xDim, attDim):
        super(AttentionUnit, self).__init__()

        self.sDim = sDim
        self.xDim = xDim
        self.attDim = attDim

        self.sEmbed = nn.Linear(
            sDim,
            attDim,
            weight_attr=paddle.nn.initializer.Normal(std=0.01),
            bias_attr=paddle.nn.initializer.Constant(0.0))
        self.xEmbed = nn.Linear(
            xDim,
            attDim,
            weight_attr=paddle.nn.initializer.Normal(std=0.01),
            bias_attr=paddle.nn.initializer.Constant(0.0))
        self.wEmbed = nn.Linear(
            attDim,
            1,
            weight_attr=paddle.nn.initializer.Normal(std=0.01),
            bias_attr=paddle.nn.initializer.Constant(0.0))

    def forward(self, x, sPrev):
        batch_size, T, _ = x.shape  # [b x T x xDim]
        x = paddle.reshape(x, [-1, self.xDim])  # [(b x T) x xDim]
        xProj = self.xEmbed(x)  # [(b x T) x attDim]
        xProj = paddle.reshape(xProj, [batch_size, T, -1])  # [b x T x attDim]

        sPrev = sPrev.squeeze(0)
        sProj = self.sEmbed(sPrev)  # [b x attDim]
        sProj = paddle.unsqueeze(sProj, 1)  # [b x 1 x attDim]
        sProj = paddle.expand(sProj,
                              [batch_size, T, self.attDim])  # [b x T x attDim]

        sumTanh = paddle.tanh(sProj + xProj)
        sumTanh = paddle.reshape(sumTanh, [-1, self.attDim])

        vProj = self.wEmbed(sumTanh)  # [(b x T) x 1]
        vProj = paddle.reshape(vProj, [batch_size, T])

        alpha = F.softmax(
            vProj, axis=1)  # attention weights for each sample in the minibatch

        return alpha


class DecoderUnit(nn.Layer):
    def __init__(self, sDim, xDim, yDim, attDim):
        super(DecoderUnit, self).__init__()
        self.sDim = sDim
        self.xDim = xDim
        self.yDim = yDim
        self.attDim = attDim
        self.emdDim = attDim

        self.attention_unit = AttentionUnit(sDim, xDim, attDim)
        self.tgt_embedding = nn.Embedding(
            yDim + 1, self.emdDim, weight_attr=nn.initializer.Normal(
                std=0.01))  # the last is used for <BOS>
        self.gru = nn.GRUCell(input_size=xDim + self.emdDim, hidden_size=sDim)
        self.fc = nn.Linear(
            sDim,
            yDim,
            weight_attr=nn.initializer.Normal(std=0.01),
            bias_attr=nn.initializer.Constant(value=0))
        self.embed_fc = nn.Linear(300, self.sDim)

    def get_initial_state(self, embed, tile_times=1):
        assert embed.shape[1] == 300
        state = self.embed_fc(embed)  # N * sDim
        if tile_times != 1:
            state = state.unsqueeze(1)
            trans_state = paddle.transpose(state, perm=[1, 0, 2])
            state = paddle.tile(trans_state, repeat_times=[tile_times, 1, 1])
            trans_state = paddle.transpose(state, perm=[1, 0, 2])
            state = paddle.reshape(trans_state, shape=[-1, self.sDim])
        state = state.unsqueeze(0)  # 1 * N * sDim
        return state

    def forward(self, x, sPrev, yPrev):
        # x: feature sequence from the image decoder.
        batch_size, T, _ = x.shape
        alpha = self.attention_unit(x, sPrev)
        context = paddle.squeeze(paddle.matmul(alpha.unsqueeze(1), x), axis=1)
        yPrev = paddle.cast(yPrev, dtype="int64")
        yProj = self.tgt_embedding(yPrev)

        concat_context = paddle.concat([yProj, context], 1)
        concat_context = paddle.squeeze(concat_context, 1)
        sPrev = paddle.squeeze(sPrev, 0)
        output, state = self.gru(concat_context, sPrev)
        output = paddle.squeeze(output, axis=1)
        output = self.fc(output)
        return output, state


if __name__ == "__main__":
    model = AttentionRecognitionHead(
        num_classes=20,
        in_channels=30,
        sDim=512,
        attDim=512,
        max_len_labels=25,
        out_channels=38)

    data = paddle.ones([16, 64, 3])
    targets = paddle.ones([16, 25])
    length = paddle.to_tensor(20)
    x = [data, targets, length]
    output = model(x)
    print(output.shape)