ocr_db_crnn.cc 13.2 KB
Newer Older
L
LDOUVLEV 已提交
1
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
L
LDOUBLEV 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle_api.h" // NOLINT
L
LDOUBLEV 已提交
16 17
#include <chrono>

W
WenmuZhou 已提交
18
#include "cls_process.h"
L
LDOUVLEV 已提交
19 20
#include "crnn_process.h"
#include "db_post_process.h"
L
LDOUBLEV 已提交
21

22
using namespace paddle::lite_api; // NOLINT
L
LDOUVLEV 已提交
23
using namespace std;
L
LDOUBLEV 已提交
24 25

// fill tensor with mean and scale and trans layout: nhwc -> nchw, neon speed up
L
LDOUBLEV 已提交
26 27 28
void NeonMeanScale(const float *din, float *dout, int size,
                   const std::vector<float> mean,
                   const std::vector<float> scale) {
L
LDOUBLEV 已提交
29 30 31 32 33 34 35 36 37 38 39
  if (mean.size() != 3 || scale.size() != 3) {
    std::cerr << "[ERROR] mean or scale size must equal to 3\n";
    exit(1);
  }
  float32x4_t vmean0 = vdupq_n_f32(mean[0]);
  float32x4_t vmean1 = vdupq_n_f32(mean[1]);
  float32x4_t vmean2 = vdupq_n_f32(mean[2]);
  float32x4_t vscale0 = vdupq_n_f32(scale[0]);
  float32x4_t vscale1 = vdupq_n_f32(scale[1]);
  float32x4_t vscale2 = vdupq_n_f32(scale[2]);

40 41 42
  float *dout_c0 = dout;
  float *dout_c1 = dout + size;
  float *dout_c2 = dout + size * 2;
L
LDOUBLEV 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

  int i = 0;
  for (; i < size - 3; i += 4) {
    float32x4x3_t vin3 = vld3q_f32(din);
    float32x4_t vsub0 = vsubq_f32(vin3.val[0], vmean0);
    float32x4_t vsub1 = vsubq_f32(vin3.val[1], vmean1);
    float32x4_t vsub2 = vsubq_f32(vin3.val[2], vmean2);
    float32x4_t vs0 = vmulq_f32(vsub0, vscale0);
    float32x4_t vs1 = vmulq_f32(vsub1, vscale1);
    float32x4_t vs2 = vmulq_f32(vsub2, vscale2);
    vst1q_f32(dout_c0, vs0);
    vst1q_f32(dout_c1, vs1);
    vst1q_f32(dout_c2, vs2);

    din += 12;
    dout_c0 += 4;
    dout_c1 += 4;
    dout_c2 += 4;
  }
  for (; i < size; i++) {
    *(dout_c0++) = (*(din++) - mean[0]) * scale[0];
    *(dout_c1++) = (*(din++) - mean[1]) * scale[1];
    *(dout_c2++) = (*(din++) - mean[2]) * scale[2];
  }
}

// resize image to a size multiple of 32 which is required by the network
70 71
cv::Mat DetResizeImg(const cv::Mat img, int max_size_len,
                     std::vector<float> &ratio_hw) {
L
LDOUBLEV 已提交
72 73 74 75
  int w = img.cols;
  int h = img.rows;

  float ratio = 1.f;
L
LDOUVLEV 已提交
76 77 78
  int max_wh = w >= h ? w : h;
  if (max_wh > max_size_len) {
    if (h > w) {
L
LDOUBLEV 已提交
79
      ratio = static_cast<float>(max_size_len) / static_cast<float>(h);
L
LDOUBLEV 已提交
80
    } else {
L
LDOUBLEV 已提交
81
      ratio = static_cast<float>(max_size_len) / static_cast<float>(w);
L
LDOUBLEV 已提交
82 83 84
    }
  }

L
LDOUBLEV 已提交
85 86
  int resize_h = static_cast<int>(float(h) * ratio);
  int resize_w = static_cast<int>(float(w) * ratio);
L
LDOUBLEV 已提交
87 88
  if (resize_h % 32 == 0)
    resize_h = resize_h;
L
LDOUVLEV 已提交
89
  else if (resize_h / 32 < 1 + 1e-5)
L
LDOUBLEV 已提交
90 91 92 93 94 95
    resize_h = 32;
  else
    resize_h = (resize_h / 32 - 1) * 32;

  if (resize_w % 32 == 0)
    resize_w = resize_w;
L
LDOUVLEV 已提交
96
  else if (resize_w / 32 < 1 + 1e-5)
L
LDOUBLEV 已提交
97 98
    resize_w = 32;
  else
L
LDOUVLEV 已提交
99
    resize_w = (resize_w / 32 - 1) * 32;
L
LDOUBLEV 已提交
100 101 102 103

  cv::Mat resize_img;
  cv::resize(img, resize_img, cv::Size(resize_w, resize_h));

L
LDOUBLEV 已提交
104 105
  ratio_hw.push_back(static_cast<float>(resize_h) / static_cast<float>(h));
  ratio_hw.push_back(static_cast<float>(resize_w) / static_cast<float>(w));
L
LDOUBLEV 已提交
106 107 108
  return resize_img;
}

W
WenmuZhou 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
cv::Mat RunClsModel(cv::Mat img, std::shared_ptr<PaddlePredictor> predictor_cls,
                    const float thresh = 0.5) {
  std::vector<float> mean = {0.5f, 0.5f, 0.5f};
  std::vector<float> scale = {1 / 0.5f, 1 / 0.5f, 1 / 0.5f};

  cv::Mat srcimg;
  img.copyTo(srcimg);
  cv::Mat crop_img;
  cv::Mat resize_img;

  int index = 0;
  float wh_ratio =
      static_cast<float>(crop_img.cols) / static_cast<float>(crop_img.rows);

  resize_img = ClsResizeImg(crop_img);
  resize_img.convertTo(resize_img, CV_32FC3, 1 / 255.f);

  const float *dimg = reinterpret_cast<const float *>(resize_img.data);

  std::unique_ptr<Tensor> input_tensor0(std::move(predictor_cls->GetInput(0)));
  input_tensor0->Resize({1, 3, resize_img.rows, resize_img.cols});
  auto *data0 = input_tensor0->mutable_data<float>();

  NeonMeanScale(dimg, data0, resize_img.rows * resize_img.cols, mean, scale);
  // Run CLS predictor
  predictor_cls->Run();

  // Get output and run postprocess
  std::unique_ptr<const Tensor> softmax_out(
      std::move(predictor_cls->GetOutput(0)));
  std::unique_ptr<const Tensor> label_out(
      std::move(predictor_cls->GetOutput(1)));
  auto *softmax_scores = softmax_out->mutable_data<float>();
  auto *label_idxs = label_out->data<int64>();
  int label_idx = label_idxs[0];
  float score = softmax_scores[label_idx];

  if (label_idx % 2 == 1 && score > thresh) {
    cv::rotate(srcimg, srcimg, 1);
  }
  return srcimg;
}

152
void RunRecModel(std::vector<std::vector<std::vector<int>>> boxes, cv::Mat img,
L
LDOUVLEV 已提交
153
                 std::shared_ptr<PaddlePredictor> predictor_crnn,
L
update  
LDOUBLEV 已提交
154 155
                 std::vector<std::string> &rec_text,
                 std::vector<float> &rec_text_score,
W
WenmuZhou 已提交
156 157
                 std::vector<std::string> charactor_dict,
                 std::shared_ptr<PaddlePredictor> predictor_cls) {
L
LDOUBLEV 已提交
158 159 160 161 162 163 164 165 166
  std::vector<float> mean = {0.5f, 0.5f, 0.5f};
  std::vector<float> scale = {1 / 0.5f, 1 / 0.5f, 1 / 0.5f};

  cv::Mat srcimg;
  img.copyTo(srcimg);
  cv::Mat crop_img;
  cv::Mat resize_img;

  int index = 0;
L
LDOUVLEV 已提交
167 168
  for (int i = boxes.size() - 1; i >= 0; i--) {
    crop_img = GetRotateCropImage(srcimg, boxes[i]);
W
WenmuZhou 已提交
169
    crop_img = RunClsModel(crop_img, predictor_cls);
L
LDOUBLEV 已提交
170 171
    float wh_ratio =
        static_cast<float>(crop_img.cols) / static_cast<float>(crop_img.rows);
L
LDOUBLEV 已提交
172

173
    resize_img = CrnnResizeImg(crop_img, wh_ratio);
L
LDOUBLEV 已提交
174 175
    resize_img.convertTo(resize_img, CV_32FC3, 1 / 255.f);

176
    const float *dimg = reinterpret_cast<const float *>(resize_img.data);
L
LDOUBLEV 已提交
177

L
LDOUVLEV 已提交
178 179
    std::unique_ptr<Tensor> input_tensor0(
        std::move(predictor_crnn->GetInput(0)));
L
LDOUBLEV 已提交
180
    input_tensor0->Resize({1, 3, resize_img.rows, resize_img.cols});
181
    auto *data0 = input_tensor0->mutable_data<float>();
L
LDOUBLEV 已提交
182

L
LDOUBLEV 已提交
183
    NeonMeanScale(dimg, data0, resize_img.rows * resize_img.cols, mean, scale);
L
LDOUBLEV 已提交
184 185 186 187 188
    //// Run CRNN predictor
    predictor_crnn->Run();

    // Get output and run postprocess
    std::unique_ptr<const Tensor> output_tensor0(
L
LDOUVLEV 已提交
189
        std::move(predictor_crnn->GetOutput(0)));
L
LDOUBLEV 已提交
190
    auto *rec_idx = output_tensor0->data<int64>();
L
LDOUBLEV 已提交
191 192 193 194 195

    auto rec_idx_lod = output_tensor0->lod();
    auto shape_out = output_tensor0->shape();

    std::vector<int> pred_idx;
L
LDOUBLEV 已提交
196 197 198
    for (int n = static_cast<int>(rec_idx_lod[0][0]);
         n < static_cast<int>(rec_idx_lod[0][1]); n += 1) {
      pred_idx.push_back(static_cast<int>(rec_idx[n]));
L
LDOUBLEV 已提交
199 200
    }

201 202
    if (pred_idx.size() < 1e-3)
      continue;
L
LDOUBLEV 已提交
203 204

    index += 1;
L
LDOUVLEV 已提交
205
    std::string pred_txt = "";
L
LDOUBLEV 已提交
206
    for (int n = 0; n < pred_idx.size(); n++) {
L
LDOUVLEV 已提交
207
      pred_txt += charactor_dict[pred_idx[n]];
L
LDOUBLEV 已提交
208
    }
L
LDOUVLEV 已提交
209
    rec_text.push_back(pred_txt);
L
LDOUBLEV 已提交
210 211

    ////get score
L
LDOUVLEV 已提交
212 213
    std::unique_ptr<const Tensor> output_tensor1(
        std::move(predictor_crnn->GetOutput(1)));
214
    auto *predict_batch = output_tensor1->data<float>();
L
LDOUBLEV 已提交
215 216 217 218 219 220 221 222 223
    auto predict_shape = output_tensor1->shape();

    auto predict_lod = output_tensor1->lod();

    int blank = predict_shape[1];
    float score = 0.f;
    int count = 0;

    for (int n = predict_lod[0][0]; n < predict_lod[0][1] - 1; n++) {
L
LDOUBLEV 已提交
224 225 226 227
      int argmax_idx =
          static_cast<int>(Argmax(&predict_batch[n * predict_shape[1]],
                                  &predict_batch[(n + 1) * predict_shape[1]]));
      float max_value =
L
LDOUVLEV 已提交
228 229
          float(*std::max_element(&predict_batch[n * predict_shape[1]],
                                  &predict_batch[(n + 1) * predict_shape[1]]));
L
LDOUBLEV 已提交
230 231 232 233 234 235 236

      if (blank - 1 - argmax_idx > 1e-5) {
        score += max_value;
        count += 1;
      }
    }
    score /= count;
L
LDOUVLEV 已提交
237
    rec_text_score.push_back(score);
L
LDOUBLEV 已提交
238 239 240
  }
}

241 242 243
std::vector<std::vector<std::vector<int>>>
RunDetModel(std::shared_ptr<PaddlePredictor> predictor, cv::Mat img,
            std::map<std::string, double> Config) {
L
LDOUBLEV 已提交
244
  // Read img
L
LDOUVLEV 已提交
245
  int max_side_len = int(Config["max_side_len"]);
L
LDOUBLEV 已提交
246 247 248 249

  cv::Mat srcimg;
  img.copyTo(srcimg);

L
LDOUVLEV 已提交
250 251
  std::vector<float> ratio_hw;
  img = DetResizeImg(img, max_side_len, ratio_hw);
L
LDOUBLEV 已提交
252 253 254 255 256 257
  cv::Mat img_fp;
  img.convertTo(img_fp, CV_32FC3, 1.0 / 255.f);

  // Prepare input data from image
  std::unique_ptr<Tensor> input_tensor0(std::move(predictor->GetInput(0)));
  input_tensor0->Resize({1, 3, img_fp.rows, img_fp.cols});
258
  auto *data0 = input_tensor0->mutable_data<float>();
L
LDOUBLEV 已提交
259 260

  std::vector<float> mean = {0.485f, 0.456f, 0.406f};
L
LDOUVLEV 已提交
261
  std::vector<float> scale = {1 / 0.229f, 1 / 0.224f, 1 / 0.225f};
262
  const float *dimg = reinterpret_cast<const float *>(img_fp.data);
L
LDOUBLEV 已提交
263
  NeonMeanScale(dimg, data0, img_fp.rows * img_fp.cols, mean, scale);
L
LDOUBLEV 已提交
264 265 266 267 268

  // Run predictor
  predictor->Run();

  // Get output and post process
L
LDOUVLEV 已提交
269 270
  std::unique_ptr<const Tensor> output_tensor(
      std::move(predictor->GetOutput(0)));
271
  auto *outptr = output_tensor->data<float>();
L
LDOUBLEV 已提交
272 273 274
  auto shape_out = output_tensor->shape();

  // Save output
L
update  
LDOUBLEV 已提交
275 276
  float pred[shape_out[2] * shape_out[3]];
  unsigned char cbuf[shape_out[2] * shape_out[3]];
L
LDOUBLEV 已提交
277

L
LDOUVLEV 已提交
278
  for (int i = 0; i < int(shape_out[2] * shape_out[3]); i++) {
L
LDOUBLEV 已提交
279 280
    pred[i] = static_cast<float>(outptr[i]);
    cbuf[i] = static_cast<unsigned char>((outptr[i]) * 255);
L
LDOUBLEV 已提交
281 282
  }

L
LDOUBLEV 已提交
283
  cv::Mat cbuf_map(shape_out[2], shape_out[3], CV_8UC1,
L
LDOUBLEV 已提交
284
                   reinterpret_cast<unsigned char *>(cbuf));
L
LDOUBLEV 已提交
285
  cv::Mat pred_map(shape_out[2], shape_out[3], CV_32F,
L
LDOUBLEV 已提交
286
                   reinterpret_cast<float *>(pred));
L
LDOUBLEV 已提交
287

L
LDOUVLEV 已提交
288
  const double threshold = double(Config["det_db_thresh"]) * 255;
L
LDOUBLEV 已提交
289 290 291 292
  const double maxvalue = 255;
  cv::Mat bit_map;
  cv::threshold(cbuf_map, bit_map, threshold, maxvalue, cv::THRESH_BINARY);

L
LDOUVLEV 已提交
293
  auto boxes = BoxesFromBitmap(pred_map, bit_map, Config);
L
LDOUBLEV 已提交
294

L
LDOUVLEV 已提交
295 296
  std::vector<std::vector<std::vector<int>>> filter_boxes =
      FilterTagDetRes(boxes, ratio_hw[0], ratio_hw[1], srcimg);
L
LDOUBLEV 已提交
297

L
LDOUVLEV 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
  return filter_boxes;
}

std::shared_ptr<PaddlePredictor> loadModel(std::string model_file) {
  MobileConfig config;
  config.set_model_from_file(model_file);

  std::shared_ptr<PaddlePredictor> predictor =
      CreatePaddlePredictor<MobileConfig>(config);
  return predictor;
}

cv::Mat Visualization(cv::Mat srcimg,
                      std::vector<std::vector<std::vector<int>>> boxes) {
  cv::Point rook_points[boxes.size()][4];
  for (int n = 0; n < boxes.size(); n++) {
    for (int m = 0; m < boxes[0].size(); m++) {
L
LDOUBLEV 已提交
315 316
      rook_points[n][m] = cv::Point(static_cast<int>(boxes[n][m][0]),
                                    static_cast<int>(boxes[n][m][1]));
L
LDOUBLEV 已提交
317 318 319 320
    }
  }
  cv::Mat img_vis;
  srcimg.copyTo(img_vis);
L
LDOUVLEV 已提交
321
  for (int n = 0; n < boxes.size(); n++) {
322
    const cv::Point *ppt[1] = {rook_points[n]};
L
LDOUVLEV 已提交
323 324
    int npt[] = {4};
    cv::polylines(img_vis, ppt, npt, 1, 1, CV_RGB(0, 255, 0), 2, 8, 0);
L
LDOUBLEV 已提交
325 326
  }

327 328
  cv::imwrite("./vis.jpg", img_vis);
  std::cout << "The detection visualized image saved in ./vis.jpg" << std::endl;
L
LDOUVLEV 已提交
329 330 331
  return img_vis;
}

332 333
std::vector<std::string> split(const std::string &str,
                               const std::string &delim) {
L
LDOUVLEV 已提交
334
  std::vector<std::string> res;
335 336 337
  if ("" == str)
    return res;
  char *strs = new char[str.length() + 1];
L
LDOUVLEV 已提交
338 339
  std::strcpy(strs, str.c_str());

340
  char *d = new char[delim.length() + 1];
L
LDOUVLEV 已提交
341 342
  std::strcpy(d, delim.c_str());

343
  char *p = std::strtok(strs, d);
L
LDOUVLEV 已提交
344 345 346 347 348
  while (p) {
    string s = p;
    res.push_back(s);
    p = std::strtok(NULL, d);
  }
L
LDOUBLEV 已提交
349

L
LDOUVLEV 已提交
350
  return res;
L
LDOUBLEV 已提交
351 352
}

L
LDOUVLEV 已提交
353 354 355 356 357 358 359 360 361 362
std::map<std::string, double> LoadConfigTxt(std::string config_path) {
  auto config = ReadDict(config_path);

  std::map<std::string, double> dict;
  for (int i = 0; i < config.size(); i++) {
    std::vector<std::string> res = split(config[i], " ");
    dict[res[0]] = stod(res[1]);
  }
  return dict;
}
L
LDOUBLEV 已提交
363

364
int main(int argc, char **argv) {
L
LDOUVLEV 已提交
365 366 367
  if (argc < 5) {
    std::cerr << "[ERROR] usage: " << argv[0]
              << " det_model_file rec_model_file image_path\n";
L
LDOUBLEV 已提交
368 369 370 371
    exit(1);
  }
  std::string det_model_file = argv[1];
  std::string rec_model_file = argv[2];
W
WenmuZhou 已提交
372 373 374
  std::string cls_model_file = argv[3];
  std::string img_path = argv[4];
  std::string dict_path = argv[5];
L
LDOUVLEV 已提交
375 376 377

  //// load config from txt file
  auto Config = LoadConfigTxt("./config.txt");
L
LDOUBLEV 已提交
378 379 380

  auto start = std::chrono::system_clock::now();

L
LDOUVLEV 已提交
381 382
  auto det_predictor = loadModel(det_model_file);
  auto rec_predictor = loadModel(rec_model_file);
W
WenmuZhou 已提交
383
  auto cls_predictor = loadModel(cls_model_file);
L
LDOUVLEV 已提交
384

L
update  
LDOUBLEV 已提交
385
  auto charactor_dict = ReadDict(dict_path);
L
LDOUBLEV 已提交
386
  charactor_dict.push_back(" ");
L
update  
LDOUBLEV 已提交
387

L
LDOUBLEV 已提交
388
  cv::Mat srcimg = cv::imread(img_path, cv::IMREAD_COLOR);
L
LDOUVLEV 已提交
389
  auto boxes = RunDetModel(det_predictor, srcimg, Config);
L
LDOUBLEV 已提交
390

L
LDOUVLEV 已提交
391 392
  std::vector<std::string> rec_text;
  std::vector<float> rec_text_score;
L
update  
LDOUBLEV 已提交
393
  RunRecModel(boxes, srcimg, rec_predictor, rec_text, rec_text_score,
W
WenmuZhou 已提交
394
              charactor_dict, cls_predictor);
L
LDOUBLEV 已提交
395

L
LDOUVLEV 已提交
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
  auto end = std::chrono::system_clock::now();
  auto duration =
      std::chrono::duration_cast<std::chrono::microseconds>(end - start);

  //// visualization
  auto img_vis = Visualization(srcimg, boxes);

  //// print recognized text
  for (int i = 0; i < rec_text.size(); i++) {
    std::cout << i << "\t" << rec_text[i] << "\t" << rec_text_score[i]
              << std::endl;
  }

  std::cout << "花费了"
            << double(duration.count()) *
                   std::chrono::microseconds::period::num /
                   std::chrono::microseconds::period::den
L
LDOUBLEV 已提交
413 414 415 416
            << "秒" << std::endl;

  return 0;
}