db_postprocess_torch.py 4.6 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
import cv2
import numpy as np
import pyclipper
from shapely.geometry import Polygon


class DBPostProcess():
    def __init__(self,
                 thresh=0.3,
                 box_thresh=0.7,
                 max_candidates=1000,
                 unclip_ratio=1.5):
        self.min_size = 3
        self.thresh = thresh
        self.box_thresh = box_thresh
        self.max_candidates = max_candidates
        self.unclip_ratio = unclip_ratio

    def __call__(self, pred, shape_list, is_output_polygon=False):
        '''
        batch: (image, polygons, ignore_tags
        h_w_list: 包含[h,w]的数组
        pred:
            binary: text region segmentation map, with shape (N, 1,H, W)
        '''
        pred = pred.numpy()[:, 0, :, :]
        segmentation = self.binarize(pred)
        batch_out = []
        for batch_index in range(pred.shape[0]):
            height, width = shape_list[batch_index]
            boxes, scores = self.post_p(
                pred[batch_index],
                segmentation[batch_index],
                width,
                height,
                is_output_polygon=is_output_polygon)
            batch_out.append({"points": boxes})
        return batch_out

    def binarize(self, pred):
        return pred > self.thresh

    def post_p(self,
               pred,
               bitmap,
               dest_width,
               dest_height,
               is_output_polygon=True):
        '''
        _bitmap: single map with shape (H, W),
            whose values are binarized as {0, 1}
        '''
        height, width = pred.shape
        boxes = []
        new_scores = []
        contours, _ = cv2.findContours((bitmap * 255).astype(np.uint8),
                                       cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
        for contour in contours[:self.max_candidates]:
            epsilon = 0.005 * cv2.arcLength(contour, True)
            approx = cv2.approxPolyDP(contour, epsilon, True)
            points = approx.reshape((-1, 2))
            if points.shape[0] < 4:
                continue
            score = self.box_score_fast(pred, points.reshape(-1, 2))
            if self.box_thresh > score:
                continue

            if points.shape[0] > 2:
                box = self.unclip(points, unclip_ratio=self.unclip_ratio)
                if len(box) > 1 or len(box) == 0:
                    continue
            else:
                continue
            four_point_box, sside = self.get_mini_boxes(box.reshape((-1, 1, 2)))
            if sside < self.min_size + 2:
                continue

            if not is_output_polygon:
                box = np.array(four_point_box)
            else:
                box = box.reshape(-1, 2)
            box[:, 0] = np.clip(
                np.round(box[:, 0] / width * dest_width), 0, dest_width)
            box[:, 1] = np.clip(
                np.round(box[:, 1] / height * dest_height), 0, dest_height)
            boxes.append(box)
            new_scores.append(score)
        return boxes, new_scores

    def unclip(self, box, unclip_ratio=1.5):
        poly = Polygon(box)
        distance = poly.area * unclip_ratio / poly.length
        offset = pyclipper.PyclipperOffset()
        offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
        expanded = np.array(offset.Execute(distance))
        return expanded

    def get_mini_boxes(self, contour):
        bounding_box = cv2.minAreaRect(contour)
        points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])

        index_1, index_2, index_3, index_4 = 0, 1, 2, 3
        if points[1][1] > points[0][1]:
            index_1 = 0
            index_4 = 1
        else:
            index_1 = 1
            index_4 = 0
        if points[3][1] > points[2][1]:
            index_2 = 2
            index_3 = 3
        else:
            index_2 = 3
            index_3 = 2

        box = [
            points[index_1], points[index_2], points[index_3], points[index_4]
        ]
        return box, min(bounding_box[1])

    def box_score_fast(self, bitmap, _box):
        h, w = bitmap.shape[:2]
        box = _box.copy()
        xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int), 0, w - 1)
        xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int), 0, w - 1)
        ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int), 0, h - 1)
        ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int), 0, h - 1)

        mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
        box[:, 0] = box[:, 0] - xmin
        box[:, 1] = box[:, 1] - ymin
        cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1)
        return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]