pg_fpn.py 9.6 KB
Newer Older
1
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
J
Jethong 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
from paddle import nn
import paddle.nn.functional as F
from paddle import ParamAttr


class ConvBNLayer(nn.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 groups=1,
                 is_vd_mode=False,
                 act=None,
                 name=None):
        super(ConvBNLayer, self).__init__()

        self.is_vd_mode = is_vd_mode
        self._pool2d_avg = nn.AvgPool2D(
            kernel_size=2, stride=2, padding=0, ceil_mode=True)
        self._conv = nn.Conv2D(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=(kernel_size - 1) // 2,
            groups=groups,
            weight_attr=ParamAttr(name=name + "_weights"),
            bias_attr=False)
        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
        self._batch_norm = nn.BatchNorm(
            out_channels,
            act=act,
            param_attr=ParamAttr(name=bn_name + '_scale'),
            bias_attr=ParamAttr(bn_name + '_offset'),
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance',
            use_global_stats=False)

    def forward(self, inputs):
        y = self._conv(inputs)
        y = self._batch_norm(y)
        return y


class DeConvBNLayer(nn.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size=4,
                 stride=2,
                 padding=1,
                 groups=1,
                 if_act=True,
                 act=None,
                 name=None):
        super(DeConvBNLayer, self).__init__()

        self.if_act = if_act
        self.act = act
        self.deconv = nn.Conv2DTranspose(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            groups=groups,
            weight_attr=ParamAttr(name=name + '_weights'),
            bias_attr=False)
        self.bn = nn.BatchNorm(
            num_channels=out_channels,
            act=act,
            param_attr=ParamAttr(name="bn_" + name + "_scale"),
            bias_attr=ParamAttr(name="bn_" + name + "_offset"),
            moving_mean_name="bn_" + name + "_mean",
            moving_variance_name="bn_" + name + "_variance",
            use_global_stats=False)

    def forward(self, x):
        x = self.deconv(x)
        x = self.bn(x)
        return x


J
Jethong 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
class PGFPN(nn.Layer):
    def __init__(self, in_channels, **kwargs):
        super(PGFPN, self).__init__()
        num_inputs = [2048, 2048, 1024, 512, 256]
        num_outputs = [256, 256, 192, 192, 128]
        self.out_channels = 128
        self.conv_bn_layer_1 = ConvBNLayer(
            in_channels=3,
            out_channels=32,
            kernel_size=3,
            stride=1,
            act=None,
            name='FPN_d1')
        self.conv_bn_layer_2 = ConvBNLayer(
            in_channels=64,
            out_channels=64,
            kernel_size=3,
            stride=1,
            act=None,
            name='FPN_d2')
        self.conv_bn_layer_3 = ConvBNLayer(
            in_channels=256,
            out_channels=128,
            kernel_size=3,
            stride=1,
            act=None,
            name='FPN_d3')
        self.conv_bn_layer_4 = ConvBNLayer(
            in_channels=32,
            out_channels=64,
            kernel_size=3,
            stride=2,
            act=None,
            name='FPN_d4')
        self.conv_bn_layer_5 = ConvBNLayer(
            in_channels=64,
            out_channels=64,
            kernel_size=3,
            stride=1,
            act='relu',
            name='FPN_d5')
        self.conv_bn_layer_6 = ConvBNLayer(
            in_channels=64,
            out_channels=128,
            kernel_size=3,
            stride=2,
            act=None,
            name='FPN_d6')
        self.conv_bn_layer_7 = ConvBNLayer(
            in_channels=128,
            out_channels=128,
            kernel_size=3,
            stride=1,
            act='relu',
            name='FPN_d7')
        self.conv_bn_layer_8 = ConvBNLayer(
            in_channels=128,
            out_channels=128,
            kernel_size=1,
            stride=1,
            act=None,
            name='FPN_d8')
J
Jethong 已提交
169

J
Jethong 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
        self.conv_h0 = ConvBNLayer(
            in_channels=num_inputs[0],
            out_channels=num_outputs[0],
            kernel_size=1,
            stride=1,
            act=None,
            name="conv_h{}".format(0))
        self.conv_h1 = ConvBNLayer(
            in_channels=num_inputs[1],
            out_channels=num_outputs[1],
            kernel_size=1,
            stride=1,
            act=None,
            name="conv_h{}".format(1))
        self.conv_h2 = ConvBNLayer(
            in_channels=num_inputs[2],
            out_channels=num_outputs[2],
            kernel_size=1,
            stride=1,
            act=None,
            name="conv_h{}".format(2))
        self.conv_h3 = ConvBNLayer(
            in_channels=num_inputs[3],
            out_channels=num_outputs[3],
            kernel_size=1,
            stride=1,
            act=None,
            name="conv_h{}".format(3))
        self.conv_h4 = ConvBNLayer(
            in_channels=num_inputs[4],
            out_channels=num_outputs[4],
            kernel_size=1,
            stride=1,
            act=None,
            name="conv_h{}".format(4))
J
Jethong 已提交
205 206

        self.dconv0 = DeConvBNLayer(
J
Jethong 已提交
207 208
            in_channels=num_outputs[0],
            out_channels=num_outputs[0 + 1],
J
Jethong 已提交
209 210
            name="dconv_{}".format(0))
        self.dconv1 = DeConvBNLayer(
J
Jethong 已提交
211 212
            in_channels=num_outputs[1],
            out_channels=num_outputs[1 + 1],
J
Jethong 已提交
213 214 215
            act=None,
            name="dconv_{}".format(1))
        self.dconv2 = DeConvBNLayer(
J
Jethong 已提交
216 217
            in_channels=num_outputs[2],
            out_channels=num_outputs[2 + 1],
J
Jethong 已提交
218 219 220
            act=None,
            name="dconv_{}".format(2))
        self.dconv3 = DeConvBNLayer(
J
Jethong 已提交
221 222
            in_channels=num_outputs[3],
            out_channels=num_outputs[3 + 1],
J
Jethong 已提交
223 224 225
            act=None,
            name="dconv_{}".format(3))
        self.conv_g1 = ConvBNLayer(
J
Jethong 已提交
226 227
            in_channels=num_outputs[1],
            out_channels=num_outputs[1],
J
Jethong 已提交
228 229 230 231 232
            kernel_size=3,
            stride=1,
            act='relu',
            name="conv_g{}".format(1))
        self.conv_g2 = ConvBNLayer(
J
Jethong 已提交
233 234
            in_channels=num_outputs[2],
            out_channels=num_outputs[2],
J
Jethong 已提交
235 236 237 238 239
            kernel_size=3,
            stride=1,
            act='relu',
            name="conv_g{}".format(2))
        self.conv_g3 = ConvBNLayer(
J
Jethong 已提交
240 241
            in_channels=num_outputs[3],
            out_channels=num_outputs[3],
J
Jethong 已提交
242 243 244 245 246
            kernel_size=3,
            stride=1,
            act='relu',
            name="conv_g{}".format(3))
        self.conv_g4 = ConvBNLayer(
J
Jethong 已提交
247 248
            in_channels=num_outputs[4],
            out_channels=num_outputs[4],
J
Jethong 已提交
249 250 251 252 253
            kernel_size=3,
            stride=1,
            act='relu',
            name="conv_g{}".format(4))
        self.convf = ConvBNLayer(
J
Jethong 已提交
254 255
            in_channels=num_outputs[4],
            out_channels=num_outputs[4],
J
Jethong 已提交
256 257 258 259 260 261
            kernel_size=1,
            stride=1,
            act=None,
            name="conv_f{}".format(4))

    def forward(self, x):
J
Jethong 已提交
262 263 264 265 266 267 268 269
        c0, c1, c2, c3, c4, c5, c6 = x
        # FPN_Down_Fusion
        f = [c0, c1, c2]
        g = [None, None, None]
        h = [None, None, None]
        h[0] = self.conv_bn_layer_1(f[0])
        h[1] = self.conv_bn_layer_2(f[1])
        h[2] = self.conv_bn_layer_3(f[2])
J
Jethong 已提交
270

J
Jethong 已提交
271 272 273 274 275
        g[0] = self.conv_bn_layer_4(h[0])
        g[1] = paddle.add(g[0], h[1])
        g[1] = F.relu(g[1])
        g[1] = self.conv_bn_layer_5(g[1])
        g[1] = self.conv_bn_layer_6(g[1])
J
Jethong 已提交
276

J
Jethong 已提交
277 278 279 280
        g[2] = paddle.add(g[1], h[2])
        g[2] = F.relu(g[2])
        g[2] = self.conv_bn_layer_7(g[2])
        f_down = self.conv_bn_layer_8(g[2])
J
Jethong 已提交
281

J
Jethong 已提交
282 283 284 285 286 287 288 289 290
        # FPN UP Fusion
        f1 = [c6, c5, c4, c3, c2]
        g = [None, None, None, None, None]
        h = [None, None, None, None, None]
        h[0] = self.conv_h0(f1[0])
        h[1] = self.conv_h1(f1[1])
        h[2] = self.conv_h2(f1[2])
        h[3] = self.conv_h3(f1[3])
        h[4] = self.conv_h4(f1[4])
J
Jethong 已提交
291

J
Jethong 已提交
292 293 294 295 296
        g[0] = self.dconv0(h[0])
        g[1] = paddle.add(g[0], h[1])
        g[1] = F.relu(g[1])
        g[1] = self.conv_g1(g[1])
        g[1] = self.dconv1(g[1])
J
Jethong 已提交
297

J
Jethong 已提交
298 299 300 301
        g[2] = paddle.add(g[1], h[2])
        g[2] = F.relu(g[2])
        g[2] = self.conv_g2(g[2])
        g[2] = self.dconv2(g[2])
J
Jethong 已提交
302

J
Jethong 已提交
303 304 305 306
        g[3] = paddle.add(g[2], h[3])
        g[3] = F.relu(g[3])
        g[3] = self.conv_g3(g[3])
        g[3] = self.dconv3(g[3])
J
Jethong 已提交
307

J
Jethong 已提交
308 309 310 311 312
        g[4] = paddle.add(x=g[3], y=h[4])
        g[4] = F.relu(g[4])
        g[4] = self.conv_g4(g[4])
        f_up = self.convf(g[4])
        f_common = paddle.add(f_down, f_up)
J
Jethong 已提交
313 314
        f_common = F.relu(f_common)
        return f_common