e2e_pg_loss.py 6.4 KB
Newer Older
1
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
J
Jethong 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from paddle import nn
import paddle

22
from .det_basic_loss import DiceLoss
J
Jethong 已提交
23
from ppocr.utils.e2e_utils.extract_batchsize import pre_process
J
Jethong 已提交
24 25 26


class PGLoss(nn.Layer):
J
Jethong 已提交
27 28 29 30 31 32 33
    def __init__(self,
                 tcl_bs,
                 max_text_length,
                 max_text_nums,
                 pad_num,
                 eps=1e-6,
                 **kwargs):
J
Jethong 已提交
34
        super(PGLoss, self).__init__()
J
Jethong 已提交
35 36 37 38
        self.tcl_bs = tcl_bs
        self.max_text_nums = max_text_nums
        self.max_text_length = max_text_length
        self.pad_num = pad_num
J
Jethong 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
        self.dice_loss = DiceLoss(eps=eps)

    def border_loss(self, f_border, l_border, l_score, l_mask):
        l_border_split, l_border_norm = paddle.tensor.split(
            l_border, num_or_sections=[4, 1], axis=1)
        f_border_split = f_border
        b, c, h, w = l_border_norm.shape
        l_border_norm_split = paddle.expand(
            x=l_border_norm, shape=[b, 4 * c, h, w])
        b, c, h, w = l_score.shape
        l_border_score = paddle.expand(x=l_score, shape=[b, 4 * c, h, w])
        b, c, h, w = l_mask.shape
        l_border_mask = paddle.expand(x=l_mask, shape=[b, 4 * c, h, w])
        border_diff = l_border_split - f_border_split
        abs_border_diff = paddle.abs(border_diff)
        border_sign = abs_border_diff < 1.0
        border_sign = paddle.cast(border_sign, dtype='float32')
        border_sign.stop_gradient = True
        border_in_loss = 0.5 * abs_border_diff * abs_border_diff * border_sign + \
                         (abs_border_diff - 0.5) * (1.0 - border_sign)
        border_out_loss = l_border_norm_split * border_in_loss
        border_loss = paddle.sum(border_out_loss * l_border_score * l_border_mask) / \
                      (paddle.sum(l_border_score * l_border_mask) + 1e-5)
        return border_loss

    def direction_loss(self, f_direction, l_direction, l_score, l_mask):
        l_direction_split, l_direction_norm = paddle.tensor.split(
            l_direction, num_or_sections=[2, 1], axis=1)
        f_direction_split = f_direction
        b, c, h, w = l_direction_norm.shape
        l_direction_norm_split = paddle.expand(
            x=l_direction_norm, shape=[b, 2 * c, h, w])
        b, c, h, w = l_score.shape
        l_direction_score = paddle.expand(x=l_score, shape=[b, 2 * c, h, w])
        b, c, h, w = l_mask.shape
        l_direction_mask = paddle.expand(x=l_mask, shape=[b, 2 * c, h, w])
        direction_diff = l_direction_split - f_direction_split
        abs_direction_diff = paddle.abs(direction_diff)
        direction_sign = abs_direction_diff < 1.0
        direction_sign = paddle.cast(direction_sign, dtype='float32')
        direction_sign.stop_gradient = True
        direction_in_loss = 0.5 * abs_direction_diff * abs_direction_diff * direction_sign + \
                            (abs_direction_diff - 0.5) * (1.0 - direction_sign)
        direction_out_loss = l_direction_norm_split * direction_in_loss
        direction_loss = paddle.sum(direction_out_loss * l_direction_score * l_direction_mask) / \
                         (paddle.sum(l_direction_score * l_direction_mask) + 1e-5)
        return direction_loss

    def ctcloss(self, f_char, tcl_pos, tcl_mask, tcl_label, label_t):
        f_char = paddle.transpose(f_char, [0, 2, 3, 1])
        tcl_pos = paddle.reshape(tcl_pos, [-1, 3])
        tcl_pos = paddle.cast(tcl_pos, dtype=int)
        f_tcl_char = paddle.gather_nd(f_char, tcl_pos)
        f_tcl_char = paddle.reshape(f_tcl_char,
                                    [-1, 64, 37])  # len(Lexicon_Table)+1
        f_tcl_char_fg, f_tcl_char_bg = paddle.split(f_tcl_char, [36, 1], axis=2)
        f_tcl_char_bg = f_tcl_char_bg * tcl_mask + (1.0 - tcl_mask) * 20.0
        b, c, l = tcl_mask.shape
        tcl_mask_fg = paddle.expand(x=tcl_mask, shape=[b, c, 36 * l])
        tcl_mask_fg.stop_gradient = True
        f_tcl_char_fg = f_tcl_char_fg * tcl_mask_fg + (1.0 - tcl_mask_fg) * (
            -20.0)
        f_tcl_char_mask = paddle.concat([f_tcl_char_fg, f_tcl_char_bg], axis=2)
        f_tcl_char_ld = paddle.transpose(f_tcl_char_mask, (1, 0, 2))
        N, B, _ = f_tcl_char_ld.shape
        input_lengths = paddle.to_tensor([N] * B, dtype='int64')
        cost = paddle.nn.functional.ctc_loss(
            log_probs=f_tcl_char_ld,
            labels=tcl_label,
            input_lengths=input_lengths,
            label_lengths=label_t,
J
Jethong 已提交
110
            blank=self.pad_num,
J
Jethong 已提交
111 112 113 114 115 116 117 118
            reduction='none')
        cost = cost.mean()
        return cost

    def forward(self, predicts, labels):
        images, tcl_maps, tcl_label_maps, border_maps \
            , direction_maps, training_masks, label_list, pos_list, pos_mask = labels
        # for all the batch_size
J
Jethong 已提交
119 120 121
        pos_list, pos_mask, label_list, label_t = pre_process(
            label_list, pos_list, pos_mask, self.max_text_length,
            self.max_text_nums, self.pad_num, self.tcl_bs)
J
Jethong 已提交
122

J
Jethong 已提交
123 124
        f_score, f_border, f_direction, f_char = predicts['f_score'], predicts['f_border'], predicts['f_direction'], \
                                                 predicts['f_char']
J
Jethong 已提交
125
        score_loss = self.dice_loss(f_score, tcl_maps, training_masks)
J
Jethong 已提交
126
        border_loss = self.border_loss(f_border, border_maps, tcl_maps,
J
Jethong 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140
                                       training_masks)
        direction_loss = self.direction_loss(f_direction, direction_maps,
                                             tcl_maps, training_masks)
        ctc_loss = self.ctcloss(f_char, pos_list, pos_mask, label_list, label_t)
        loss_all = score_loss + border_loss + direction_loss + 5 * ctc_loss

        losses = {
            'loss': loss_all,
            "score_loss": score_loss,
            "border_loss": border_loss,
            "direction_loss": direction_loss,
            "ctc_loss": ctc_loss
        }
        return losses