ch_PP-OCRv2_rec_distillation.yml 3.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
Global:
  debug: false
  use_gpu: true
  epoch_num: 800
  log_smooth_window: 20
  print_batch_step: 10
  save_model_dir: ./output/rec_pp-OCRv2_distillation
  save_epoch_step: 3
  eval_batch_step: [0, 2000]
  cal_metric_during_train: true
  pretrained_model:
  checkpoints:
  save_inference_dir:
  use_visualdl: false
  infer_img: doc/imgs_words/ch/word_1.jpg
  character_dict_path: ppocr/utils/ppocr_keys_v1.txt
  max_text_length: 25
  infer_mode: false
  use_space_char: true
  distributed: true
  save_res_path: ./output/rec/predicts_pp-OCRv2_distillation.txt


Optimizer:
  name: Adam
  beta1: 0.9
  beta2: 0.999
  lr:
    name: Piecewise
    decay_epochs : [700, 800]
    values : [0.001, 0.0001]
    warmup_epoch: 5
  regularizer:
    name: L2
    factor: 2.0e-05

Architecture:
  model_type: &model_type "rec"
  name: DistillationModel
  algorithm: Distillation
  Models:
    Teacher:
      pretrained:
      freeze_params: false
      return_all_feats: true
      model_type: *model_type
      algorithm: CRNN
      Transform:
      Backbone:
        name: MobileNetV1Enhance
        scale: 0.5
      Neck:
        name: SequenceEncoder
        encoder_type: rnn
        hidden_size: 64
      Head:
        name: CTCHead
        mid_channels: 96
        fc_decay: 0.00002
    Student:
      pretrained:
      freeze_params: false
      return_all_feats: true
      model_type: *model_type
      algorithm: CRNN
      Transform:
      Backbone:
        name: MobileNetV1Enhance
        scale: 0.5
      Neck:
        name: SequenceEncoder
        encoder_type: rnn
        hidden_size: 64
      Head:
        name: CTCHead
        mid_channels: 96
        fc_decay: 0.00002
  

Loss:
  name: CombinedLoss
  loss_config_list:
  - DistillationCTCLoss:
      weight: 1.0
      model_name_list: ["Student", "Teacher"]
      key: head_out
  - DistillationDMLLoss:
      weight: 1.0
      act: "softmax"
      use_log: true
      model_name_pairs:
      - ["Student", "Teacher"]
      key: head_out
  - DistillationDistanceLoss:
      weight: 1.0
      mode: "l2"
      model_name_pairs:
      - ["Student", "Teacher"]
      key: backbone_out

PostProcess:
  name: DistillationCTCLabelDecode
  model_name: ["Student", "Teacher"]
  key: head_out

Metric:
  name: DistillationMetric
  base_metric_name: RecMetric
  main_indicator: acc
  key: "Student"

Train:
  dataset:
    name: SimpleDataSet
    data_dir: ./train_data/
    label_file_list:
    - ./train_data/train_list.txt
    transforms:
    - DecodeImage:
        img_mode: BGR
        channel_first: false
    - RecAug:
    - CTCLabelEncode:
    - RecResizeImg:
        image_shape: [3, 32, 320]
    - KeepKeys:
        keep_keys:
        - image
        - label
        - length
  loader:
    shuffle: true
    batch_size_per_card: 128
    drop_last: true
    num_sections: 1
    num_workers: 8
Eval:
  dataset:
    name: SimpleDataSet
    data_dir: ./train_data
    label_file_list:
    - ./train_data/val_list.txt
    transforms:
    - DecodeImage:
        img_mode: BGR
        channel_first: false
    - CTCLabelEncode:
    - RecResizeImg:
        image_shape: [3, 32, 320]
    - KeepKeys:
        keep_keys:
        - image
        - label
        - length
  loader:
    shuffle: false
    drop_last: false
    batch_size_per_card: 128
    num_workers: 8