det_basic_loss.py 5.3 KB
Newer Older
W
WenmuZhou 已提交
1
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
L
LDOUBLEV 已提交
2
#
W
WenmuZhou 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
L
LDOUBLEV 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
W
WenmuZhou 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WenmuZhou 已提交
14 15 16 17
"""
This code is refer from:
https://github.com/WenmuZhou/DBNet.pytorch/blob/master/models/losses/basic_loss.py
"""
L
LDOUBLEV 已提交
18 19 20 21 22 23
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np

W
WenmuZhou 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
import paddle
from paddle import nn
import paddle.nn.functional as F


class BalanceLoss(nn.Layer):
    def __init__(self,
                 balance_loss=True,
                 main_loss_type='DiceLoss',
                 negative_ratio=3,
                 return_origin=False,
                 eps=1e-6,
                 **kwargs):
        """
               The BalanceLoss for Differentiable Binarization text detection
               args:
                   balance_loss (bool): whether balance loss or not, default is True
                   main_loss_type (str): can only be one of ['CrossEntropy','DiceLoss',
                       'Euclidean','BCELoss', 'MaskL1Loss'], default is  'DiceLoss'.
                   negative_ratio (int|float): float, default is 3.
                   return_origin (bool): whether return unbalanced loss or not, default is False.
                   eps (float): default is 1e-6.
               """
        super(BalanceLoss, self).__init__()
        self.balance_loss = balance_loss
        self.main_loss_type = main_loss_type
        self.negative_ratio = negative_ratio
        self.return_origin = return_origin
        self.eps = eps

        if self.main_loss_type == "CrossEntropy":
            self.loss = nn.CrossEntropyLoss()
        elif self.main_loss_type == "Euclidean":
            self.loss = nn.MSELoss()
        elif self.main_loss_type == "DiceLoss":
            self.loss = DiceLoss(self.eps)
        elif self.main_loss_type == "BCELoss":
            self.loss = BCELoss(reduction='none')
        elif self.main_loss_type == "MaskL1Loss":
            self.loss = MaskL1Loss(self.eps)
        else:
            loss_type = [
                'CrossEntropy', 'DiceLoss', 'Euclidean', 'BCELoss', 'MaskL1Loss'
            ]
            raise Exception(
                "main_loss_type in BalanceLoss() can only be one of {}".format(
                    loss_type))

    def forward(self, pred, gt, mask=None):
        """
        The BalanceLoss for Differentiable Binarization text detection
        args:
            pred (variable): predicted feature maps.
            gt (variable): ground truth feature maps.
            mask (variable): masked maps.
        return: (variable) balanced loss
        """
        positive = gt * mask
        negative = (1 - gt) * mask

        positive_count = int(positive.sum())
        negative_count = int(
            min(negative.sum(), positive_count * self.negative_ratio))
        loss = self.loss(pred, gt, mask=mask)

        if not self.balance_loss:
            return loss

        positive_loss = positive * loss
        negative_loss = negative * loss
        negative_loss = paddle.reshape(negative_loss, shape=[-1])
        if negative_count > 0:
            sort_loss = negative_loss.sort(descending=True)
            negative_loss = sort_loss[:negative_count]
            # negative_loss, _ = paddle.topk(negative_loss, k=negative_count_int)
            balance_loss = (positive_loss.sum() + negative_loss.sum()) / (
                positive_count + negative_count + self.eps)
        else:
            balance_loss = positive_loss.sum() / (positive_count + self.eps)
        if self.return_origin:
            return balance_loss, loss

        return balance_loss


class DiceLoss(nn.Layer):
    def __init__(self, eps=1e-6):
        super(DiceLoss, self).__init__()
        self.eps = eps

    def forward(self, pred, gt, mask, weights=None):
        """
        DiceLoss function.
        """

        assert pred.shape == gt.shape
        assert pred.shape == mask.shape
        if weights is not None:
            assert weights.shape == mask.shape
            mask = weights * mask
        intersection = paddle.sum(pred * gt * mask)

        union = paddle.sum(pred * mask) + paddle.sum(gt * mask) + self.eps
        loss = 1 - 2.0 * intersection / union
        assert loss <= 1
L
LDOUBLEV 已提交
129 130
        return loss

W
WenmuZhou 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152

class MaskL1Loss(nn.Layer):
    def __init__(self, eps=1e-6):
        super(MaskL1Loss, self).__init__()
        self.eps = eps

    def forward(self, pred, gt, mask):
        """
        Mask L1 Loss
        """
        loss = (paddle.abs(pred - gt) * mask).sum() / (mask.sum() + self.eps)
        loss = paddle.mean(loss)
        return loss


class BCELoss(nn.Layer):
    def __init__(self, reduction='mean'):
        super(BCELoss, self).__init__()
        self.reduction = reduction

    def forward(self, input, label, mask=None, weight=None, name=None):
        loss = F.binary_cross_entropy(input, label, reduction=self.reduction)
W
WenmuZhou 已提交
153
        return loss