ocr_rec.cpp 7.2 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <include/ocr_rec.h>

namespace PaddleOCR {

M
MissPenguin 已提交
19
void CRNNRecognizer::Run(cv::Mat &img, std::vector<double> *times) {
littletomatodonkey's avatar
littletomatodonkey 已提交
20 21 22 23
  cv::Mat srcimg;
  img.copyTo(srcimg);
  cv::Mat resize_img;

M
MissPenguin 已提交
24
  float wh_ratio = float(srcimg.cols) / float(srcimg.rows);
M
MissPenguin 已提交
25
  auto preprocess_start = std::chrono::steady_clock::now();
M
MissPenguin 已提交
26
  this->resize_op_.Run(srcimg, resize_img, wh_ratio, this->use_tensorrt_);
littletomatodonkey's avatar
littletomatodonkey 已提交
27

M
MissPenguin 已提交
28 29 30 31 32 33
  this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
                          this->is_scale_);

  std::vector<float> input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f);

  this->permute_op_.Run(&resize_img, input.data());
M
MissPenguin 已提交
34
  auto preprocess_end = std::chrono::steady_clock::now();
M
MissPenguin 已提交
35 36

  // Inference.
M
MissPenguin 已提交
37
  auto inference_start = std::chrono::steady_clock::now();
M
MissPenguin 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
  auto input_names = this->predictor_->GetInputNames();
  auto input_t = this->predictor_->GetInputHandle(input_names[0]);
  input_t->Reshape({1, 3, resize_img.rows, resize_img.cols});
  input_t->CopyFromCpu(input.data());
  this->predictor_->Run();

  std::vector<float> predict_batch;
  auto output_names = this->predictor_->GetOutputNames();
  auto output_t = this->predictor_->GetOutputHandle(output_names[0]);
  auto predict_shape = output_t->shape();

  int out_num = std::accumulate(predict_shape.begin(), predict_shape.end(), 1,
                                std::multiplies<int>());
  predict_batch.resize(out_num);

  output_t->CopyToCpu(predict_batch.data());
M
MissPenguin 已提交
54
  auto inference_end = std::chrono::steady_clock::now();
M
MissPenguin 已提交
55 56

  // ctc decode
M
MissPenguin 已提交
57
  auto postprocess_start = std::chrono::steady_clock::now();
M
MissPenguin 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
  std::vector<std::string> str_res;
  int argmax_idx;
  int last_index = 0;
  float score = 0.f;
  int count = 0;
  float max_value = 0.0f;

  for (int n = 0; n < predict_shape[1]; n++) {
    argmax_idx =
        int(Utility::argmax(&predict_batch[n * predict_shape[2]],
                            &predict_batch[(n + 1) * predict_shape[2]]));
    max_value =
        float(*std::max_element(&predict_batch[n * predict_shape[2]],
                                &predict_batch[(n + 1) * predict_shape[2]]));

    if (argmax_idx > 0 && (!(n > 0 && argmax_idx == last_index))) {
      score += max_value;
      count += 1;
      str_res.push_back(label_list_[argmax_idx]);
W
WenmuZhou 已提交
77
    }
M
MissPenguin 已提交
78 79 80 81 82
    last_index = argmax_idx;
  }
  score /= count;
  for (int i = 0; i < str_res.size(); i++) {
    std::cout << str_res[i];
littletomatodonkey's avatar
littletomatodonkey 已提交
83
  }
M
MissPenguin 已提交
84
  std::cout << "\tscore: " << score << std::endl;
M
MissPenguin 已提交
85 86 87 88 89 90 91 92
  auto postprocess_end = std::chrono::steady_clock::now();

  std::chrono::duration<float> preprocess_diff = preprocess_end - preprocess_start;
  times->push_back(double(preprocess_diff.count() * 1000));
  std::chrono::duration<float> inference_diff = inference_end - inference_start;
  times->push_back(double(inference_diff.count() * 1000));
  std::chrono::duration<float> postprocess_diff = postprocess_end - postprocess_start;
  times->push_back(double(postprocess_diff.count() * 1000));
littletomatodonkey's avatar
littletomatodonkey 已提交
93 94
}

littletomatodonkey's avatar
littletomatodonkey 已提交
95
void CRNNRecognizer::LoadModel(const std::string &model_dir) {
L
LDOUBLEV 已提交
96 97
  //   AnalysisConfig config;
  paddle_infer::Config config;
文幕地方's avatar
文幕地方 已提交
98 99
  config.SetModel(model_dir + "/inference.pdmodel",
                  model_dir + "/inference.pdiparams");
littletomatodonkey's avatar
littletomatodonkey 已提交
100

littletomatodonkey's avatar
littletomatodonkey 已提交
101 102
  if (this->use_gpu_) {
    config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
L
LDOUBLEV 已提交
103
    if (this->use_tensorrt_) {
M
MissPenguin 已提交
104 105 106 107 108 109 110
      auto precision = paddle_infer::Config::Precision::kFloat32;
      if (this->precision_ == "fp16") {
        precision = paddle_infer::Config::Precision::kHalf;
      }
     if (this->precision_ == "int8") {
        precision = paddle_infer::Config::Precision::kInt8;
      } 
L
LDOUBLEV 已提交
111 112
      config.EnableTensorRtEngine(
          1 << 20, 10, 3,
M
MissPenguin 已提交
113
          precision,
L
LDOUBLEV 已提交
114
          false, false);
L
LDOUBLEV 已提交
115 116 117 118 119 120 121 122 123
      std::map<std::string, std::vector<int>> min_input_shape = {
          {"x", {1, 3, 32, 10}}};
      std::map<std::string, std::vector<int>> max_input_shape = {
          {"x", {1, 3, 32, 2000}}};
      std::map<std::string, std::vector<int>> opt_input_shape = {
          {"x", {1, 3, 32, 320}}};

      config.SetTRTDynamicShapeInfo(min_input_shape, max_input_shape,
                                    opt_input_shape);
L
LDOUBLEV 已提交
124
    }
littletomatodonkey's avatar
littletomatodonkey 已提交
125 126
  } else {
    config.DisableGpu();
littletomatodonkey's avatar
littletomatodonkey 已提交
127 128
    if (this->use_mkldnn_) {
      config.EnableMKLDNN();
W
WenmuZhou 已提交
129 130
      // cache 10 different shapes for mkldnn to avoid memory leak
      config.SetMkldnnCacheCapacity(10);
littletomatodonkey's avatar
littletomatodonkey 已提交
131
    }
littletomatodonkey's avatar
littletomatodonkey 已提交
132 133
    config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_);
  }
littletomatodonkey's avatar
littletomatodonkey 已提交
134

L
LDOUBLEV 已提交
135
  config.SwitchUseFeedFetchOps(false);
littletomatodonkey's avatar
littletomatodonkey 已提交
136
  // true for multiple input
littletomatodonkey's avatar
littletomatodonkey 已提交
137
  config.SwitchSpecifyInputNames(true);
littletomatodonkey's avatar
littletomatodonkey 已提交
138 139 140 141

  config.SwitchIrOptim(true);

  config.EnableMemoryOptim();
littletomatodonkey's avatar
littletomatodonkey 已提交
142
  config.DisableGlogInfo();
littletomatodonkey's avatar
littletomatodonkey 已提交
143

L
LDOUBLEV 已提交
144
  this->predictor_ = CreatePredictor(config);
littletomatodonkey's avatar
littletomatodonkey 已提交
145 146
}

littletomatodonkey's avatar
littletomatodonkey 已提交
147 148
cv::Mat CRNNRecognizer::GetRotateCropImage(const cv::Mat &srcimage,
                                           std::vector<std::vector<int>> box) {
littletomatodonkey's avatar
littletomatodonkey 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
  cv::Mat image;
  srcimage.copyTo(image);
  std::vector<std::vector<int>> points = box;

  int x_collect[4] = {box[0][0], box[1][0], box[2][0], box[3][0]};
  int y_collect[4] = {box[0][1], box[1][1], box[2][1], box[3][1]};
  int left = int(*std::min_element(x_collect, x_collect + 4));
  int right = int(*std::max_element(x_collect, x_collect + 4));
  int top = int(*std::min_element(y_collect, y_collect + 4));
  int bottom = int(*std::max_element(y_collect, y_collect + 4));

  cv::Mat img_crop;
  image(cv::Rect(left, top, right - left, bottom - top)).copyTo(img_crop);

  for (int i = 0; i < points.size(); i++) {
    points[i][0] -= left;
    points[i][1] -= top;
  }

  int img_crop_width = int(sqrt(pow(points[0][0] - points[1][0], 2) +
                                pow(points[0][1] - points[1][1], 2)));
  int img_crop_height = int(sqrt(pow(points[0][0] - points[3][0], 2) +
                                 pow(points[0][1] - points[3][1], 2)));

  cv::Point2f pts_std[4];
  pts_std[0] = cv::Point2f(0., 0.);
  pts_std[1] = cv::Point2f(img_crop_width, 0.);
  pts_std[2] = cv::Point2f(img_crop_width, img_crop_height);
  pts_std[3] = cv::Point2f(0.f, img_crop_height);

  cv::Point2f pointsf[4];
  pointsf[0] = cv::Point2f(points[0][0], points[0][1]);
  pointsf[1] = cv::Point2f(points[1][0], points[1][1]);
  pointsf[2] = cv::Point2f(points[2][0], points[2][1]);
  pointsf[3] = cv::Point2f(points[3][0], points[3][1]);

  cv::Mat M = cv::getPerspectiveTransform(pointsf, pts_std);

  cv::Mat dst_img;
  cv::warpPerspective(img_crop, dst_img, M,
                      cv::Size(img_crop_width, img_crop_height),
                      cv::BORDER_REPLICATE);

  if (float(dst_img.rows) >= float(dst_img.cols) * 1.5) {
    cv::Mat srcCopy = cv::Mat(dst_img.rows, dst_img.cols, dst_img.depth());
    cv::transpose(dst_img, srcCopy);
    cv::flip(srcCopy, srcCopy, 0);
    return srcCopy;
  } else {
    return dst_img;
  }
}

L
littletomatodonkey 已提交
202
} // namespace PaddleOCR