infer_det.py 5.4 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys
import time
import numpy as np
from copy import deepcopy
import json

# from paddle.fluid.contrib.model_stat import summary


def set_paddle_flags(**kwargs):
    for key, value in kwargs.items():
        if os.environ.get(key, None) is None:
            os.environ[key] = str(value)


# NOTE(paddle-dev): All of these flags should be
# set before `import paddle`. Otherwise, it would
# not take any effect. 
set_paddle_flags(
    FLAGS_eager_delete_tensor_gb=0,  # enable GC to save memory
)

from paddle import fluid
from ppocr.utils.utility import create_module
from ppocr.utils.utility import load_config, merge_config
import ppocr.data.det.reader_main as reader
from ppocr.utils.utility import ArgsParser
from ppocr.utils.check import check_gpu
from ppocr.utils.checkpoint import load_pretrain, load_checkpoint, save, save_model

from ppocr.utils.utility import initial_logger
logger = initial_logger()
from ppocr.utils.eval_utils import eval_det_run


def draw_det_res(dt_boxes, config, img_name, ino):
    if len(dt_boxes) > 0:
        img_set_path = config['TestReader']['img_set_dir']
        img_path = img_set_path + img_name
        import cv2
        src_im = cv2.imread(img_path)
        for box in dt_boxes:
            box = box.astype(np.int32).reshape((-1, 1, 2))
            cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
        cv2.imwrite("tmp%d.jpg" % ino, src_im)


def main():
    config = load_config(FLAGS.config)
    merge_config(FLAGS.opt)
    print(config)

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
    check_gpu(use_gpu)

    place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

    det_model = create_module(config['Architecture']['function'])(params=config)

    startup_prog = fluid.Program()
    eval_prog = fluid.Program()
    with fluid.program_guard(eval_prog, startup_prog):
        with fluid.unique_name.guard():
            eval_outputs = det_model(mode="test")
            eval_fetch_list = [v.name for v in eval_outputs]
    eval_prog = eval_prog.clone(for_test=True)
    exe.run(startup_prog)

    pretrain_weights = config['Global']['pretrain_weights']
    if pretrain_weights is not None:
        fluid.load(eval_prog, pretrain_weights)
    else:
        logger.info("Not find pretrain_weights:%s" % pretrain_weights)
        sys.exit(0)

    save_res_path = config['Global']['save_res_path']
    with open(save_res_path, "wb") as fout:
        test_reader = reader.test_reader(config=config)
        tackling_num = 0
        for data in test_reader():
            img_num = len(data)
            tackling_num = tackling_num + img_num
            logger.info("tackling_num:%d", tackling_num)
            img_list = []
            ratio_list = []
            img_name_list = []
            for ino in range(img_num):
                img_list.append(data[ino][0])
                ratio_list.append(data[ino][1])
                img_name_list.append(data[ino][2])
            img_list = np.concatenate(img_list, axis=0)
            outs = exe.run(eval_prog,\
                feed={'image': img_list},\
                fetch_list=eval_fetch_list)

            global_params = config['Global']
            postprocess_params = deepcopy(config["PostProcess"])
            postprocess_params.update(global_params)
            postprocess = create_module(postprocess_params['function'])\
                (params=postprocess_params)
            dt_boxes_list = postprocess(outs, ratio_list)
            for ino in range(img_num):
                dt_boxes = dt_boxes_list[ino]
                img_name = img_name_list[ino]
                dt_boxes_json = []
                for box in dt_boxes:
                    tmp_json = {"transcription": ""}
                    tmp_json['points'] = box.tolist()
                    dt_boxes_json.append(tmp_json)
                otstr = img_name + "\t" + json.dumps(dt_boxes_json) + "\n"
                fout.write(otstr.encode())
                #draw_det_res(dt_boxes, config, img_name, ino)
    logger.info("success!")


def test_reader():
    config = load_config(FLAGS.config)
    merge_config(FLAGS.opt)
    print(config)
    tmp_reader = reader.test_reader(config=config)
    count = 0
    print_count = 0
    import time
    starttime = time.time()
    for data in tmp_reader():
        count += len(data)
        print_count += 1
        if print_count % 10 == 0:
            batch_time = (time.time() - starttime) / print_count
            print("reader:", count, len(data), batch_time)
    print("finish reader:", count)
    print("success")


if __name__ == '__main__':
    parser = ArgsParser()
    FLAGS = parser.parse_args()
    main()
#     test_reader()